Что же касается требований к качеству сырьевых материалов, то, по данным, в настоящее время бла­годаря совершенствованию технологии и оборудования представляется возможным снизить требования к изве­сти и песку без ущерба для качества кирпича. В част­ности, опыт многих предприятий показывает возможность стабильного производства силикатного кирпича хорошего качества при использовании низко­качественной извести — активностью 60-65%, либо пес­ков с повышенным содержанием пылевидных, или­стых и глинистых частиц, а также пониженным содер­жанием Si02 (ОСТ 21-1). Это позволяет расширить сырьевую базу, однако исключает целесообразность привязки к заводам силикатного кирпича, работаю­щих на низкокачественном сырье, цехов по производ­ству стеновых ячеистобетонных блоков даже при нали­чии свободных производственных площадей или мощ­ностей автоклавного хозяйства.


Проектирование состава силикатной смеси

При определении рационального состава силикатной смеси прежде всего исходят из требования получе­ния достаточно прочного сырца, а затем уже получе­ния силикатного кирпича требуемой прочности и экс­плуатационной стойкости. Состав силикатной смеси должен подбираться с таким расчетом, чтобы получить кирпич с требуемыми строительно-эксплуатационными показателями при наименьших материальных и энер­гетических затратах.

Механизация операций съема сырца с прессов и укладки на запарочные вагонетки, а также переход на выпуск пустотелого кирпича, предусматривает, чтобы минимальная прочность сырца в зависимости от его размера и пустотности составляла 0,3-0,4 МПа.


Отмечается, что при содержании в силикатной смеси 30-35% тонкодисперсных фракций, вводимых с вяжущим, глиной и частично с песком (частицы раз­мером менее 90 мкм), прочность сырца может дости­гать значений 0.6-0,8 МПа.

На отечественных заводах силикатного кирпича широко применяются известково-кремнеземистые вя­жущие совместного сухого помола.

Что же касается состава известково-кремнеземисто­го вяжущего и силикатной смеси, то подбор их должен осуществляется индивидуально для каждого завода с

учетом особенностей характеристик сырья, требуемых строительно-эксплуатационных показателей силикат­ного кирпича, принятых режимов формования и пара­метров автоклавной обработки,


ВНПО ВНИИстром разработана и успешно приме­няется следующая методика лабораторных и полупро­мышленных испытаний по определению рационально­го состава силикатных смесей. Лабораторные образцы, получаемые прессованием силикатных смесей при удельном давлении 20 МПа в специальных формах-ци­линдрах диаметром и высотой 4,2 и 6,5 см, подвергают испытанию с определением прочности при сжатии сырцовых и автоклавированных образцов.

Для уста­новления рационального состава вяжущего изготавли­вают образцы на извести и известково-кремнеземистом вяжущем с соотношением И:П = 1:0,5; 1:0,75; 1:1 и 1:1,5. Содержание извести в смеси варьируется от 8 до 12%,а при использовании вяжущего содержание по­следнего меняется от 15 до 25% в зависимости от его состава.

После изготовления часть образцов испытывается для определения сырцовой прочности, а другая часть образцов подвергается запариванию при принятых на заводе параметрах автоклавной обработки. По резуль­татам этих испытаний строятся графики зависимости прочности сырцовых и автоклавированных образцов от содержания в силикатной смеси извести.


Состав вяжущего и его расход назначают исходя из требований достижения необходимой прочности сырца и кирпича при минимальном расходе извести и затрат электроэнергии на подготовку (помол) вяжущего.

Принятые по результатам лабораторных исследова­ний составы вяжущего и силикатной смеси проверяют­ся в заводских условиях при выпуске опытно-про­мышленной партии кирпича. При этом уточняются от­дельные параметры производства и режимы работы технологического оборудования

Следует отметить, что дополнительные затраты электроэнергии на помол части песка, при использова­нии известково-кремнеземистого вяжущего, компенси­руются повышением качества кирпича в результате улучшения работы автоматов-укладчиков и интенси­фикацией в процессе автоклавной обработки процессов структурообразования.
следнее, согласно формулам, обеспечивает повышение прочности силикатно­го камня и кирпича.

Приготовление силикатной смеси и формование сырца

Как уже отмечалось, приготовление силикатной смеси может осуществляться по централизованной или смешанной схеме.
и этом обе схемы работают в не­прерывном режиме. В этой связи для дозирования сырьевых материалов и силикатной смеси применяют­ся весовые дозаторы непрерывного действия. Весовое дозирование обеспечивает стабильность состава сырье­вых композиций и возможность автоматизированного управления работой дозаторов.

В качестве смесительного оборудования при изго­товлении силикатного кирпича в настоящее время ис­пользуются двухвальные смесители. Недостатком их является низкая износостойкость лопаток, а также плохая растираемость извести и глины, которые встре­чаются в приготовленной смеси в виде комочков.

В значительной мере лишены этих недостатков стержневые смесители конструкции ВНИИстрома. До­стоинством их являются: снижение уровня шума; по­вышенный срок службы футеровки и снижение износа стержней, что позволяет эксплуатировать их в течение года без замены, пониженный удельный расход элект­роэнергии и повышенная надежность работы в сравне­нии с лопастными смесителями.


Авторы, считают целесообразным применение стержневых смесителей не только для вторичной обработки смеси, но и для первичного смешения компо­нентов.

Характеристики выпускаемых стержневых смесите­лей по данным приводятся в табл.1.

Таблица 1.  Характеристики выпускаемых стержневых смесите­лей


Характеристики выпускаемых стержневых смесителей

 

Гашение извести и усреднение (гомогенизация) си­ликатной смеси осуществляются в специальных силосах-реакторах.

Силосы являются также своего рода промежуточ­ной емкостью для хранения и бесперебойного снабже­ния прессов силикатной смесью. Наиболее эффективны силосы непрерывного действия, применение которых позволяет практически исключить налипание на стен­кахи зависание силикатной смеси, а также умень­шить расход электроэнергии.


Перспективной представляется новая конструкция силоса-реактора, разработанная во ВНИИстроме (рис.3). Рабочим органом разгружателя силоса служат вибрирующие многоэтажные решетки, которые распо­лагаются внутри конуса силоса (см.рис.3).

Для бесперебойной работы реакторов силикатная смесь не должна налипать на стенки и особенно на по­верхность разгрузочной воронки. Это достигается при влажности гашеной силикатной смеси на выходе не выше 3,5%, дополнительным утеплением стенок реак­тора снаружи, а также использовании разгружателей с вибровозбудителями или замена неподвижной разгру­зочной воронки качающейся разгрузочной чашей с от­верстием по центру, которая оборудована подвесным вибратором.

 


Силос-реактор для силикатной смеси с вибропобудителями решетчатого типа

 

1 — конус-стабилизатор;

2 — вибратор;

3 — конус сило­са;

4 — питатель ленточный;

5- решетка многоярусная;

6- люк-лаз;

7 — решетка вертикальная


 

Рис. 3. Силос-реактор для силикатной смеси с вибро­побудителями решетчатого типа

 

Применение силосов-реакторов является одним из наиболее слабых мест технологии силикатного кирпи­ча. В этой связи естественны поиски методов и техно­логических приемов, исключающих необходимость их использования. В частности, С.Д. Мамонтовым предло­жена бессилосная технология силикатного кирпича, предусматривающая использование силикатной смеси с неполностью загашенной известью.

Однако предложенная бессилостная технология не получила пока применения главным образом из-за не­стабильности характеристик сырьевых материалов (скорости, температуры гашения и активности изве­сти) и очень узких интервалов варьирования техноло­гических характерстик силикатной смеси (время гаше­ния, расход воды и влажность смеси), а также отсутст­вия автоматизации основных технологических переде­лов приготовления силикатной смеси.

Одной из основных технологических операций яв­ляется формование сырца, так как качество готового кирпича и прежде всего его дефектность зависят от ка­чества сырца.

Получение сырца необходимой формы, размеров и прочности достигается путем одностороннего или дву­стороннего прессования рыхлой зернистой силикатной смеси в специальных прессах. При этом происходит
сближение частиц силикатной смеси в результате уменьшения ее первоначальной пустотности и разме­щения мелких частиц в промежутках между крупны­ми. Основным условием, обеспечивающим уплотнение смеси, является ее высокая гомогенность.

Достигаемая при этом прочность сырца обусловлена действием капиллярных сил, механическим зацепле­нием зерен и молекулярным сцеплением, доля кото­рых составляет соответственно 81,8; 14,6 и 3,6% от об­щей прочности. Помимо этих факторов сырцовая прочность образцов существенно зависит от наличия в смеси тонкодисперсных веществ и минералов с функ­циональными ОН-группами: гидроксида кальция, гли­нистых примесей, оводненных техногенных стекол, до­бавок пыли-уноса цементных печей или золы-уноса ТЭС.

В качестве одного из основных параметров формо­вания сырца силикатного кирпича применяется пока­затель удельного давления прессования. Однако разно­образие конструкций пресс-форм, неодинаковая про­должительность приложения усилия и скорость прессо­вания, а также различное положение сырца при прес­совании — ”на ложок”, ”на постель”, или ”на тычок”, затрудняют возможность использования только лишь показателя удельного давления прессования для срав­нительной оценки различных прессов. Не менее важ­ным является показатель времени (продолжительно­сти) приложения нагрузки, так называемое время чис­того прессования. В этой связи предложено ис­пользовать показатель удельной работы прессования, которая является интегральной характеристикой тех­нологического процесса формования силикатных изде­лий плотной структуры. Удельная работа прессования, по определению С.И. Хвостенкова, есть отношение ра­боты прессования к единице объема сырца. Установле­но, что удовлетворительные прочностные показатели сырца и силикатного кирпича (марки 125-200) дости­гаются при удельной работе прессования, равной 250- 600 кгс м/дм3.

Прочность силикатного кирпича зависит от исход­ной межзерновой пустотности песка уплотненной си­ликатной смеси, объема и в меньшей мере фазового и морфологического состава синтезируемых при авто­клавной обработке цементирующих новообразований и плотности синтезируемого силикатного камня. Последняя зависит от степени уплотне­ния силикатной смеси, определяемой удельным давле­нием и работой прессования. Отмечается, что повы­шение удельного давления прессования с 10 до 40 МПа приводит к увеличению прочности силикатного кирпи­ча в 3,2 раза, тогда как прочность сырца в этом же ди­апазоне давлений возрастает всего лишь в 1,8 раза. Этим, по-видимому, объясняется то, что многие ис­следователи считают достаточным удельное давление прессования 15-20 МПа, обеспечивающее стабильное получение сырца прочностью 0,2-0,25 МПа.

Однако опыт таких зарубежных фирм, как «Ат­ласе”, «Дорстенер”, ’’Крупп-Интертехник” и других, показывает, что одним из направлений технического прогресса в производстве силикатного кирпича и сили­катных камней является разработка и применение прессов с показателем удельного давления прессования до 50 МПа. В этой связи нам предоставляется целесо­образным развитие исследований в направлении разра­ботки и применения прессов усилием прессования 600 тс и выше с временем прессования не менее 2 с, не­смотря на имевшее место недостаточно высокие ре­зультаты испытания ряда прессов, закупленных в Германии, Польше, и сложившимся в этой связи мнением о неэффективности повышения удельного давления прес­сования до 40-50 МПа.

В настоящее время на большинстве заводов СНГ используются револьверные прессы типа СМ-816, на которых выпускают утолщенный кирпич высотой 88 мм, имеющего массу выше предельной ве­личины (4,3 кг), установленной ГОСТ 379. Ограни­чения по величине предельной массы кирпича, а так­же повышенные требования по теплофизическим свой­ствам, определяемые плотностью силикатного камня, создало известные трудности, решение которых многие исследователи видят либо в переходе на производство вместо утолщенного одинарного кирпича высотой 65 мм, либо в переходе на формование утолщенного пус­тотелого кирпича на существующих револьверных прессах. Последний путь технически более оправдан и вполне реален. В частности, ВНИИстром разработал и внедрил на ряде предприятий штампы для формова­ния двух-, трех-, семи- и одиннадцатипустотного кирпича с объемом пустот соответственно 10, 15, 18 и 23%.

Отмечается, что внедрение семи- и одиннадца­типустотных штампов, позволяющих формовать утол­щенный кирпич пустотностью до 23%, нецелесообраз­но из-за сложности их конструкции и низкой прочно­сти сырца, получаемого на револьверных прессах с ма­лым временем прессования. Это отрицательно сказыва­ется на качестве кирпича. Более того, несмотря на снижение массы кирпича ниже 4,3 кг, по теплофизи­ческим показателям кирпич из-за высокой плотности, черепка (силикатного камня) равной 1950 кг/м3, явля­ется лишь условно теплоэффективным. Получение кирпича, отвечающего требованиям к теплоэффектив­ному, достигается при пустотности не менее 26-28%, что практически невозможно достичь на действующих заводах без их технического перевооружения .

ВНИИстром разработал специальный штамп СК-57А, позволяющий получить утолщенный трехпустот­ный силикатный кирпич массой ниже 4,3 кг, который является условно эффективным.

Отмечается, что внедрение штампов с пустотообразователями дает эффект, если на предприятиях од­новременно будут осуществлены следующие мероприя­тия по совершенствованию технологического процесса и оборудования:

применение известково-кремнеземистого вяжущего совместного помола с остатком на сите № 008 не более 15%. Соотношение между известью и кварцевым ком­понентом подбирается для каждого завода индивиду­ально и находится в пределах от 1:1,2 до 1:0,6,содер­жание вяжущего в смеси составляет 18-20%;

использование дозирующих устройств (весовых до­заторов типа СБ-71А и СБ-110), обеспечивающих ста­бильность состава силикатной смеси по СаО, а также ее влажность в пределах + 0,5%;

надлежащее перемешивание силикатной смеси в двухвальных быстроходных смесителях типа СМС-95, а при наличии глинистых включений в песке — стерж­невых смесителей СК-08 или СК-58;

регулярная замена футеровочных пластин пресс- форм, применение износостойких рубашек пустотооб- разователей (чугун ИЧХШ12);

содержание пресса в технически исправном состоя­нии, обеспечение его работы в мягком режиме при максимальном потреблении тока 70-80 А и количестве циклов, равном 2,8 в мин;

tehnoinfos.ru

Технология производства

 

Исходным сырьем для производства строительного материала выступает кварцевый очищенный песок (90-95%), воздушная известь (5-8%) и вода. Технология производства силиката предусматривает три основных этапа:

  • подготовка сырьевой массы;
  • прессование сырца;
  • автоклавирование.

 

Подготовка сырьевой массы

 

Подготовка сырьевой массы может проводиться двумя способами:

  • барабанным методом – составные компоненты в сухом состоянии загружаются в барабан, перемешиваются до однородного состояния и обрабатываются паром. При обработке паром сырьевая смесь увлажняется, происходит процесс гашения извести;
  • силосным методом – компоненты засыпают в мешалку, в которой происходит процесс смешивания песка, извести и воды. Далее увлажненный состав попадается в силосы (вертикальные колонны), и выстаивается на протяжении 10 часов.

 

Прессование сырца

 

Формы для пресса заполняют сырьевой массой и подают в прессовальную машину. Процесс прессовки происходит при высоком давлении — 150200 кгс/см2. В результате обработки прессом происходит уплотнение сырьевой массы, из состава удаляется практически весь воздух, расстояние между песчинками сводится к минимуму.

Прессование сырца

Автоклавирование и сушка

 

Сформированные блоки поступают в автоклав, в котором происходит процесс запаривание кирпича-сырца под давлением 8-12 атмосфер, при этом температура пара достигает 2000С. Процесс автоклавирования длится в течение 10-14 часов, на протяжении указанного времени кирпич-сырец окончательно отвердевает, приобретая необходимую прочность. На завершающем этапе производства, во избежание термического шока и как следствие растрескивания готовой продукции, снижение температуры пара в автоклаве происходит постепенно. Блоки остывают и складируются на специальных паллетах.

Автоклавирование и сушка

Достоинства силикатного кирпича

 

Основными достоинствами строительного материала являются:

  • высокая прочность;
  • экологическая чистота;
  • огнестойкость (выдерживает температуру до 600 0С);
  • морозостойкость;
  • звуконепроницаемость;
  • идеальная геометрия;
  • доступная стоимость.

 

Недостатки

 

Наряду с положительными качествами, силикатные блоки имеют ряд недостатков:

  • высокая теплопроводность;
  • большой вес;
  • высокое водопоглощение (7-8%).

 

Виды силикатного кирпича

 

В зависимости от конструктивных особенностей выделяют два вида силикатных блоков:

  • силикатный кирпич пустотелый;
  • кирпич силикатный полнотелый.

Полнотелый и пустотелый силикатный кирпич

По назначению:

  • рядовой;
  • облицовочный (лицевой).

Рядовой — предназначен для возведения конструктивных элементов зданий и сооружений, лицевой силикатный блок относится к разряду отделочных материалов и предназначен для облицовочных работ. В большинстве случаев для облицовки фасадов применяют лицевой поризованный кирпич.

 

По цвету:

  • окрашенный;
  • неокрашенный.

облицовочные кирпичи

Классификация строительного материала также происходит исходя из типоразмера, размеры силикатных блоков устанавливает ГОСТ 530-2012. Выделяют три вида силиката:

  • силикатный кирпич одинарный — 250х120х65 мм;
  • кирпич силикатный полуторный — 250х120х88 мм;
  • двойной силикатный кирпич — 250х120х138 мм.

 

ГОСТ устанавливает не только размеры блоков, но и вес изделия. Так, масса одинарного блока варьируется в диапазоне от 3 до 4 килограмм, полуторный блок весит 4-5,5 килограмм, масса двойного кирпича составляет 5-6 килограмм.

 

Технические характеристики

 

Главными техническими характеристиками силикатных блоков, которые регламентирует ГОСТ, выступают следующие параметры:

  • прочность;
  • плотность;
  • водопоглащение;
  • морозостойкость;
  • теплопроводность;
  • звукопоглощение.

Прочность силикатного кирпича зависит от марки изделия. ГОСТ предусматривает несколько видов серий силикатных блоков от М75 до М300. Цифровое обозначение указывает на предельную нагрузки на 1 см2, чем выше цифровой показатель, тем больше прочность материала.

таблица прочности кирпича

Плотность силикатных блоков зависит от марки и вида изделия. Так, плотность полнотелых изделий варьируется в числовом диапазоне 1600-1900 кг/м3, для пустотелых аналогов ГОСТ предусматривает плотность в пределах 1000-1450 кг/м3. На прочность блоков непосредственное влияние оказывает влагопроводность изделия, при насыщении водой, показатель прочности строительного материала снижается.

 

Водопоглощение – ключевой показатель, определяющий качество строительного блока. Коэффициент водопоглощения зависит от многих факторов:

  • строения материала;
  • степени пористости;
  • степени увлажненности на этапе формировки сырца и прочее.

Коэффициент водопоглощение регламентирует ГОСТ, в соответствии с которым водопоглащающая способность силикатных блоков варьируется в диапазоне 6-16%.

 

Морозостойкость – характеристика, указывающая, сколько циклов заморозки и разморозки способен выдерживать стройматериал. Морозостойкость силикатных блоков обозначается буквой F, числовые параметры варьируются в диапазоне от 15 до 100.

 

Теплопроводность силикатных блоков зависит от конструктивных особенностей материала. Пустотелый силикатный кирпич теплопроводность 0,66 Вт/м°C, полнотелый характеризуется коэффициентом теплопроводности 0,7 Вт/м°C. 

 

Средней показатель звукоизоляции строительного материала из силиката составляет 64 ДБ.

 

Дом из силикатного кирпича своими руками

 

Строительство дома из силикатного кирпича не требует большого опыта работы каменщиком, справиться с задачей сможет и начинающий строитель.

кладка силикитного кирпича

Первоначальным этапом строительных работ является расчет необходимого количества стройматериалов. Для того чтобы определить сколько кирпичей потребуется, следует просчитать площадь наружных и внутренних стен и воспользоваться калькулятором. Полученный результат увеличивают на 10-15%, запас материала в случае необходимости позволит заменить колотый кирпич. При заказе материала нужно учитывать, что количество полнотелых кирпичей в пачке размером 1х1,3 м составляет 560 штук, пустотелых утолщенных – 480.

пачка силикатного кирпича

Инвентарь и строительные материалы

 

Для проведения работ потребуются:

  • строительный уровень;
  • отвес;
  • мастерок;
  • молоток;
  • болгарка;
  • лопата;
  • емкость для приготовления раствора или бетономешалка.

 

Помимо кирпича, для возведения дома необходимы следующие материалы:

  • песок;
  • цемент;
  • щебень;
  • пластификатор;
  • арматура;
  • рубероид;
  • битум;
  • утеплитель;
  • брус;
  • кровельные материалы.

 

Последовательность работ

 

Строительство дома из кирпича состоит из нескольких этапов:

  • разметка территории;
  • подготовка котлована для фундамента;
  • литье и гидроизоляция фундамента;
  • приготовления строительного раствора для кирпичной кладки;
  • возведение стен;
  • установка перекрытий;
  • возведение кровли;
  • утепление конструкций;
  • отделочные работы.

 

Устройство фундамента

 

Перед тем как рыть котлован, следует определиться с типом будущего фундамента. Фундамент может быть:

  • ленточный – роется траншея нужной ширины и глубины, монтируется опалубка, закладывается арматура, траншея заливается бетоном;
  • монолитный – котлован вырывается по всей площади будущего строения, основание засыпается слоем песка и щебня, песчано-щебеночная подушка заливается бетоном.

 

Важно! Высота фундамента должна быть достаточной, чтобы избежать намокания кирпича.

 

После высыхания бетона, проводят гидроизоляционные работы. В качестве гидроизоляционного материала применяют рубероид, который укладывают в несколько слоев на разогретую мастику.

гидроизоляция фундамента

Возведение стен

 

Кладка строительных блоков может выполняться разными способами, выбор во многом зависит от вида материала. Основные способы кладки:

  • традиционная сплошная – подходит для полнотелых силикатных блоков;
  • колодцевая – используется при кладке из пустотелого кирпича;
  • трехслойная – кладка представляет собой конструкцию из трех слоев, в качестве первого слоя применяют рядовые блоки, промежуточный слой – утеплитель, наружный слой – лицевой кирпич.

Для приготовления кладочного раствора: одну часть цемента смешивают с четырьмя долями песка, добавляют воду и пластификатор. Вода добавляется небольшими порциями до получения смеси, по консистенции, напоминающей густой мед.

 

Кладку стен начинают с противоположных углов, с каждой стороны укладывают по три—четыре кирпича. Между углами натягивают шнур и приступают к укладке первого ряда кирпичей. На основание наносится слой раствора, поверх устанавливается кирпич, который осаживается легкими ударами мастерка, удаляется лишняя строительная смесь. При укладке последующего ряда кирпич сдвигается на четверть своей длины относительно блока предыдущего ряда. В процессе возведения стен в местах расположения оконных и дверных проемов устанавливаются перемычки.

Как правильно делать кладку смотрите в следующем видео:

 

После возведения стен приступают к монтажу балок перекрытия и возведению кровли.

Последний этап строительства – облицовка фасада и внутренняя отделка конструкций. В качестве облицовочного материала используется лицевой кирпич либо другие современные фасадные материалы, выбор зависит от проекта дома, либо личных предпочтений частного застройщика.

 

 

kirpichguru.ru

Что понадобится

Получить кирпич можно двумя способами: смешанным и централизованным.

  • Первый способ в основном используют небольшие предприятия. Здесь сырье подается отдельно на каждый аппарат.
  • На крупных кирпичных заводах применяют централизованный метод, когда сырьевая масса направляется одним потоком в смесители, а после идет одновременно на несколько прессов.

Для начала поговорим про материалы и вещества, используемые для производства силикатного кирпича.

Сырье

производство силикатного кирпича в домашних условияхИтак, что является сырьем для производства силикатного кирпича? Его изготавливается из недорогих компонентных материалов, а именно: известь, кварцевый песок и обычная вода. В процессе производства также используется краситель (если продукт требует окраски) и компоненты, которые помогают смеси затвердеть.

  • Львиную массу продукта (92%) составляет песок. Поэтому кирпичные заводы стараются располагать рядом с богатыми месторождениями этого сыпучего материала. Форма зерен песка влияет на протекание реакции с известью, на формирование готовой смеси и ее последующую прочность. Перед закладкой в процесс производства песок обязательно обрабатывают. Готовый вариант не должен содержать посторонних предметов, камней, веток, комочков глины и листьев. Указанные примеси приведут к серьезной поломке оборудования и браку продукции.
  • Процент содержание извести в продукте составляет 8%. Известь должна иметь свойство быстро гаситься и быть пережженной.
  • Воду в процессе производства кирпича применяют на всех стадиях. К ней также предъявляют серьезные требования по жесткости. Жесткая вода образует в промышленных котлах накипь и ломает оборудование.

Про оборудование для производства и раскалывания силикатного кирпича читайте далее.

Оборудование

Производственная линия силикатного кирпича включает следующее оборудование:

  1. Щепковая дробилка – оборудование для дробления различного материала на мелкие и средние куски (как в случае с арболитом).
  2. Нория – вертикальный транспортер.
  3. Силос извести – это цилиндрический, стальной сосуд, в котором осуществляется процесс гашение извести.
  4. Шаровая мельница – оборудование, которое используется для вторичного измельчения компонентов.
  5. Песчаный силос – это цилиндрический, стальной сосуд, в котором находится песчано-известковая смесь.
  6. Конвейер винтового типа – оборудование используемое для передвижения пылевидных материалов.
  7. Дозатор – устройство, с помощью которого непрерывно дозируются сыпучие смеси.
  8. Смеситель двухвалковый – устройство для перемешивания компонентов. В него подается сырой состав.
  9. Бункер для гашения извести — емкость, в которой гашение извести проходит непрерывно.
  10. Транспортер ленточного типа — механизм-передвижения.
  11. Мельница бегунковая – оборудование для помола сырья.
  12. Мост – оборудование по транспортировке и погрузке подготовленных сырых кирпичей в автоклав.
  13. Пресс гидравлический – оборудование по формированию модульного кирпича.
  14. Автоклав – оборудование для обработки сырого кирпича под давлением.
  15. Кран — передвижная машина с функциями погрузки, разгрузки и транспортирования тяжелой продукции;
  16. Погрузчик вилочного типа – это спецтехника для погрузки кирпичной продукции.

Технология производства силикатного кирпича с подробной схемой, его изготовление в домашних условиях — все это рассмотрено далее.

О том, каким критериям должен отвечать станок, а также другое оборудование для изготовления силикатного кирпича, расскажет специалист в видео ниже:

Производство силикатного кирпича

Производство силикатного кирпича – это трудоемкий и дорогостоящий процесс, который требует сложного оборудования и значительных материальных затрат. Однако окупаемость наступает достаточно быстро.

Основы изготовления

производство силикатного кирпичаПроизводство силикатного кирпича проходит следующие этапы:

  • Складирование сырья;
  • Предварительная подготовка каждого компонента сырья;
  • Получение известкового вещества;
  • Приготовление песчано-известковой смеси;
  • Гашение извести в полученной смеси;
  • Формирование сырого кирпича;
  • Обработка сырого продукта в автоклаве;
  • Упаковка продукции складирование продукции.

Полная и подробная технологическая схема производства силикатного кирпича рассмотрена ниже.

Технологическая схема и способы

  1. На первом этапе производства кирпичной массы проводят правильное дозирование. Доза компонентов может быть разной. Завершающим шагом в процессе дозирования считается добавление воды. Далее идет процесс перемешивания.
  2. На втором этапе проходит формовка. Здесь смесь поступает в бункер пресса. В основном весь процесс проходит в автомате. Высота блоков регулируется в самом оборудовании. В последнюю очередь изделие выдерживается в автоклавах. Далее продукция поступает на склад и окончательному потребителю.

Силикатные кирпичи производят барабанным и силосным способом.

  • При силосном способе компоненты перемешивают, увлажняют и направляют в емкость (силос). Там происходит процесс гашения извести. После выдержки в 12 часов, смесь еще раз увлажняют и прессуют. В заключение сырой продукт обрабатывают в автоклаве.
  • При барабанном изготовлении применяют измельченную тонкомолотую известь. Из бункеров песок и известь направляются в специальный барабан, где компоненты перемешиваются. Там же происходит гашение извести. В заключение, вращая в герметической емкости, продукт производства обрабатывают паром.
  • Можно изготовить кирпич в домашних условиях. Но это целесообразно, только если необходимо небольшое количество кирпичного материала. Процесс трудоемкий. Помощником в нем послужит неэлектрический станок, который сожмет подготовленную смесь. Прогрев и сушка изделия проходит в железной печи.

Процесс производства силикатного кирпича на заводе запечатлен в видео ниже:

Отходы производства

Во время производства, кирпича в окружающую среду выделятся пыль. Это происходит на этапах дозировании, перемешивания и измельчения. Пыль содержит вредный оксид кремния и большую дисперсность.

Пылевыделения из смеси извести и песка всегда превышает норму допустимости в 15 раз. В результате атмосферный воздух сильно загрязняется.

О том, как наладить и во сколько обойдется линия производства силикатного кирпича, расскажем ниже.

Как наладить линию по изготовлению

производство силикатного кирпича в домашнихПроцесс производства на вышеописанном оборудовании требует значительных материальных затрат. Обязательная потребуется рабочая сила. Процесс производства обязательно затребует немаленькую земельную площадь, построенное производственное здание и склад для сырья и готовой продукции.

На производство кирпича необходимо будет затратить:

  • 19 666 000 рублей – разработка месторождения. В статью включены изыскательные работы, покупка автотранспорта, строительство дорог, приобретение вагонов и лесов.
  • 115 000 000 рублей – строительство завода. В эту статью входит: возведение сооружений, зданий; приобретение оборудования; строительно-монтажные и исследовательские работы; прочие расходы).
  • 1 555 000 рублей – оборотные средства.

Как видно из сметы весь процесс производства крутится около больших денежных вложений. Если предприниматель не обладает такими возможностями, то можно закупить минимальный комплект или начать производство в домашних условиях. При таких обстоятельствах потребуется 10 млн. рублей. Производительность составит около 4 млн. штук в год. По подсчетам окупаемость наступит примерно через 2 года.

О том, что собой представляет линия по изготовлению силикатного кирпича, расскажет данное видео:

Про заводы силикатного кирпича расскажем ниже.

stroyres.net

Производство силикатного кирпича отличается от производства керамического следующими технико-экономическими показателями:

— относительная простота технологического процесса производства;

— высокий уровень механизации и автоматизации производства;

— меньший расход энергоресурсов;

— длительность технологического процесса изготовления кирпича по сравнению с керамическим от 5 до 10 раз;

— себестоимость силикатного кирпича в 2 раза ниже по сравнению с керамическим.

Производство силикатного кирпича состоит из следующих технологических переделов:

1) складирование и подготовка сырьевых компонентов;

2) получение известково-кремнеземистого вяжущего (ИКВ);

3) приготовление силикатной смеси и гашение извести в ней;

4) формование кирпича-сырца;

5) автоклавная обработка кирпича;

6) упаковка и складирование готовой продукции.

Кварцевый песок складируется на складах бункерного типа. Запас песка должен обеспечивать бесперебойную работу предприятия в течение 2 часов.

Подготовка песка заключается в оттаивании мерзлых песков в зимний период и выделении посторонних включений в виде крупных кусков щебня и гальки. Для снижения пористости смеси желательно производить шихтовку песка, используя пески различной крупности. Шихтовка песка осуществляется в приемных отделениях (складах), оборудованных бункерами, ленточными питателями и смесителями.

Подготовка комовой извести заключается в дроблении ее кусков, причем куски размером менее 80 мм подвергают одностадийному дроблению в молотковых дробилках. Куски крупнее 80 мм дробятся в две стадии: в щековых, а затем в молотковых дробилках. После этого известь дозируется в мельнице для совместного помола.

Для получения ИКВ перед помолом извести и песка их смешивают в определенном соотношении в лопастной мельнице, затем смесь выдерживают в расходных бункерах перед мельницей.

Негашеная дробленая известь и песок карьерной влажности 5 – 7 % смешиваются в соотношении ИКВ=И:П=1:1 – 2:1. Часть влаги, находящейся в песке (примерно 50 %), расходуется на гашение извести, остальная влага испаряется за счет прохождения экзотермической реакции гидратации извести.

Не рекомендуется смешивать известь и песок одновременно с помолом в мельницах, так как испаряющаяся влага, как правило, конденсируется в рукавных фильтрах и выводит их из строя.

Затем смесь поступает на совместный сухой помол в шаровых мельницах непрерывного действия. Удельная поверхность ИКВ составляет 400 – 450 м2/кг.

Приготовление силикатной смеси включает дозирование ИКВ и оставшегося песка, смешивание их, увлажнение смеси до необходимой влажности и гашение извести в смеси.

ИКВ и песок дозируют по массе, предварительно расчетным путем установив их соотношение с учетом активности (5 – 8 %) и влажности смеси (4 – 8 %).

Первичное перемешивание смеси осуществляется в тихоходных или быстроходных двухвальных смесителях периодического или непрерывного действия. Смесители снабжены перфорированными трубками или специальными распылительными устройствами для подачи воды и острого насыщенного пара, необходимого для получения оптимальной влажности и улучшения качества силикатной смеси. После смешивания ИКВ и песка силикатную смесь из смесителей подают в гасильные аппараты для гашения извести.

Процесс гашения извести протекает по следующей химической реакции:

Силикатный кирпич производство, (1)

в результате которой выделяется примерно Q=65 кДж/моль.

Гашение извести в смеси происходит в аппаратах периодического (гасильных барабанах) или непрерывного действия (в силосах-реакторах). В гасильных барабанах известь гасится в течение 50 – 60 мин и при повышенном давлении насыщенного пара – в течение 30 – 35 мин.

На предприятиях, как правило, используют силосы-реакторы, позволяющие производить гашение извести и одновременно ее усреднение за счет специальных перемешивающих лопастей, установленных в силосах-реакторах.

Кроме этого, силосы-реакторы являются бункерами промежуточного хранения, обеспечивающими постоянное поступление смеси в прессы.

Гашение извести в силосах-реакторах производится от 1 до 4 часов.

Интенсифицировать время гашения извести можно следующим образом. Например, можно гасить известь при повышенном давлении насыщенного пара pиз=0,7 МПа и при повышении температуры до t=130 –

150 ºС. Длительность гашения при этом составляет в среднем 30 мин. Также применяется способ повышения удельной поверхности ИКВ до 450 –

500 м2/кг. Можно также вводить в смесь хлористые соли.

После гашения производят повторное перемешивание смеси для более тщательного усреднения и разрушения агрегированных частиц извести (комочков).

Для гарантии полной гидратации извести при перемешивании в лопастных смесителях вводят дополнительно некоторое количество воды или острого пара для получения оптимальной влажности формовочной смеси.

В результате данной операции

— перераспределяется влага между зернами смеси;

— улучшается формуемость сырца и увеличивается его прочность;

— повышается прочность и морозостойкость кирпича.

Перемешивание происходит в лопастных или стержневых смесителях.

Формование кирпича-сырца осуществляется на гидравлических прессах.

Силикатная смесь засыпается в гнезда станины пресса с избытком. Например, для получения кирпича толщиной 88 мм в гнездо засыпается слой смеси толщиной 130 – 140 мм.

Одновременно прессуются два кирпича под давлением pуд=20 –

40 МПа с целью получения кирпича-сырца прочностью не менее 0,3 МПа.

На прочность оказывают влияние следующие факторы:

1) формовочное давление (с увеличением давления до 40 МПа коэффициент уплотнения сырца стремится к единице и прочность увеличивается на 35 – 50 %);

2) длительность прессования (положительно влияет на прочность сырца при более малых давлениях);

3) содержание в смеси тонкодисперсной составляющей (с увеличением удельной поверхности до 550 – 600 м2/кг получается сырец прочностью 0,5 – 0,6 МПа).

После прессования автоматом-укладчиком кирпич-сырец по 2 шт. снимается со стана пресса и укладывается на накопитель. Затем автомат-укладчик перекладывает кирпич-сырец на автоклавные вагонетки, которые передвигаются в автоматическом режиме по рельсам и через систему передаточных мостов заполняют автоклавы.

Автоклавная обработка – завершающий этап получения кирпича, в процессе которого формируются все основные свойства силикатного кирпича.

Применяются тупиковые и проходные автоклавы, выбор которых обуславливается технико-экономическими показателями, мощностью завода и принятой технологией. Запаривание кирпича происходит в среде насыщенного пара при температуре t=174,5 – 200 ºС и избыточном давлении pиз=0,8 –

1,2 МПа, а также при влажности 100 %.

Время запаривания устанавливается экспериментально непосредственно на предприятии с учетом требуемых свойств кирпича, объема наполнения вагонеток, способа укладки кирпича на вагонетки.

Роль пара высокого давления и температуры состоит в создании и сохранении в порах сырца жидкой фазы – влаги, при участии которой происходит растворение гидроксида кальция и песка и их химическое взаимодействие, приводящее к образованию и кристаллизации гидросиликатов кальция различной основности и в конечном итоге к образованию тоберморита, который формирует все необходимые строительно-эксплуатационные свойства кирпича.

Образование гидросиликатов кальция происходит по следующей реакции:

Силикатный кирпич производство. (2)

Процесс автоклавной обработки можно условно разделить на три периода.

1) Первый период начинается с момента впуска горячего пара до момента выравнивания температуры теплоносителя и самих изделий, давление сохраняется на уровне атмосферного до достижения t=100 ºС.

Влажность сырца возрастает и происходит стадия пропаривания сырца. Этот период длится от 0,5 до 0,75 ч. В этот период начинается растворение Ca(OH)2 и в небольшом количестве SiO2 и их взаимодействие с образованием высокоосновных гидросиликатов кальция – C2SiH2, которые придают кирпичу высокую морозостойкость (до 100 циклов), но низкую прочность (до 1 МПа).

2) Период изотермической выдержки при максимальной температуре и давлении с сохранением 100 %-ной влажности.

В первые 1,5 ч продолжается поступление конденсата от поверхностных слоев кирпича к центральной части кирпича. Концентрация свободной растворенной извести уменьшается, и продолжается более интенсивное растворение SiO2; в результате химической реакции образуются низкоосновные гидросиликаты – CSiH, которые формируют высокую прочность (до 30 МПа), но низкую морозостойкость (до 10 циклов).

При дальнейшей выдержке образуются смешанные гидросиликаты кальция и в конечном итоге образовывается тоберморит C5Si6H5.

3) Охлаждение начинается с момента снижения температуры и давления, в результате чего происходит остывание кирпича до 100 ºС.

За счет разницы температур кирпича (100 ºС.) и окружающей среды (15 – 20 ºС.) происходит резкое испарение влаги из кирпича (до 10 – 12 %).

Существует несколько путей интенсификации автоклавной обработки.

1) Экономически выгодно проводить автоклавную обработку при t=203 – 205 ºС. и при избыточном давлении pиз=1,2 – 1,6 МПа. Такая обработка длится от 4 до 5 ч.

2) Введение в силикатную смесь и ИКВ более активных кремнеземистых компонентов (трепел, зола-унос, тонкомолотый керамический лом, керамический гравий и щебень).

3) Введение кристаллических «заправок» (от 1 до 3 %) – отходов силикатного производства.

studfiles.net

Общие сведения

Характеристики материала

Кирпич, используемый в строительстве, представляет собой камень правильной формы, изготовленный из специально обработанного сырья.

На сегодняшний день активно эксплуатируется две разновидности этого материала:

  • Красный керамический кирпич (бывает как полнотелым, так и пустотелым) – производится из обожженной глины с различными стабилизирующими и упрочняющими компонентами.
  • Белый (силикатный) – изготавливается из смеси кварцевого просеянного песка и воздушной извести.

Силикатная разновидность является достаточно новым изобретением, поскольку соединение кварцевого песка с известью в стабильную структуру стало возможным только после внедрения в промышленность так называемого автоклавного метода производства.

Обратите внимание! Кроме песка и извести в состав смеси могут входить пигменты, устойчивые к атмосферным воздействиям и щелочам, содержащимся в цементном растворе. Применение подобных пигментов позволяет изготовить цветные разновидности материала.

Полученные в результате высокотемпературной обработки блоки обладают хорошими эксплуатационными характеристиками, что является причиной их активного использования при возведении самых разных конструкций.

Достоинства материала

Силикатный кирпич сегодня является одним из наиболее распространенных стройматериалов. Причина этого – внушительный список его преимуществ:

  • Во-первых, данный материал достаточно экологичен. В состав силикатной смеси не входят ни токсины, ни тяжелые металлы, что позволяет без ограничений использовать готовые блоки при постройке жилых домов.
  • Во-вторых, кирпич обладает высокими шумоизоляционными характеристиками. Внутренняя структура камня обеспечивает максимально эффективное звукопоглощение, что способствует радикальному снижению уровня внешнего шума.
  • Механическая прочность материала также заслуживает высокой оценки. В сочетании с устойчивостью к низким температурам (а в наших широтах это немаловажно) она обеспечивает долговечность зданий и их элементов, построенных из силикатного кирпича.
  • Плюсом силикатных кирпичей (как полнотелых, так и пустотелых) является их широкий ассортиментный ряд. На сегодняшний день промышленность выпускает силикатные блоки различных форм и размеров. Кроме того, как мы отмечали выше, наряду с белым спросом пользуется и цветной материал – его используют в основном для наружной отделки.

Совет! Если вы планируете возводить кирпичную кладку своими руками – проконсультируйтесь со специалистами, которые подскажут вам наиболее подходящую разновидность, устраивающую вас и по форме, и по габаритам.

Неприхотливость в укладке, обслуживании и уходе, а также достаточно умеренная цена на большинство представленных на рынке марок также являются факторами, способствующими росту популярности.

Минусы, которые нужно учитывать

Наряду с достоинствами существует ряд недостатков, которые следует обязательно принимать во внимание при выборе материала для строительства.

К наиболее важным минусам силикатных блоков относятся:

  • Значительная масса. Полнотелый кирпич весит достаточно много, что ограничивает его использование в высотном строительстве. Именно поэтому данная разновидность материала чаще всего применяется при возведении малоэтажных зданий (частных домов, коттеджей, хозяйственных построек и т.д.).
  • Низкая термостойкость. Использовать блоки из силикатной смеси можно при температуре не выше 5500С, потому материал не подходит ни для кладки печных труб, ни для облицовки каминов и т.д.
  • Восприимчивость к влаге и почвенным солям. Под воздействием грунтового раствора блоки могут терять прочность, потому не стоит применять их для возведения цоколей.

Что качается теплоизоляционных характеристик материала, то они являются достаточно спорными. Полнотелые разновидности обладают значительной теплопроводностью, а вот пустотелый кирпич обеспечивает вполне достойное теплосбережение, пусть и за счет незначительного снижения прочности.

Технология производства

Компоненты смеси

Как мы отмечали выше, технологическая схема производства керамического кирпича была известна достаточно давно. По большому счету, она не претерпела существенных изменений с момента изобретения, ведь сегодня, как и сотни лет назад, керамические блоки делают из обожженной глины.

А вот производство силикатного строительного материала – это достаточно новая технология. Несмотря на то, что песчано-известковые смеси начали использовать еще в древности, собственно кирпич (жесткие блоки фиксированной формы) стали производить только после 1880 года.

Именно тогда немецким инженером Михаэлисом была запатентована технология термопрессовки смеси из песка и извести:

  • Около 90% от всей массы смеси, которая используется для производства, составляет песок. По этой причине большинство заводов по изготовлению строительного материала данного типа размещаются в непосредственной близости от песчаных карьеров.
  • Песок, используемый в технологическом цикле, очищается от органических и минеральных примесей, а также тщательно просеивается. «В работу» идет зерно размером от 0,1 до 2,5 мм.
  • Около 10% силикатной смеси приходится на долю извести. Как правило, в технологическом цикле применяется известь из горных пород, отличающихся высоким содержанием карбоната кальция – доломитов, кальцитов, мергелей и т.д.

Обратите внимание! Для изготовления силикатных блоков используется негашеная известь. Гашение осуществляется непосредственно в ходе приготовления силикатной смеси.

Технология изготовления силикатной массы

Сырьем для производства силикатных строительных блоков разного типа является так называемая силикатная масса. Наиболее распространенная инструкция по ее приготовлению предписывает смешивание 9 массовых долей просеянного песка с одной долей воздушной извести.

На сегодняшний день при промышленном производстве кирпичей применяется два метода получения подобной смеси – силосный и барабанный.

  • Барабанный метод является несколько устаревшим и трудоемким, поскольку для его реализации необходимо значительное количество высокотемпературного водяного пара.
  • При получении силикатной массы барабанным методом сухие компоненты засыпаются в корпус барабана и перемешиваются в течение нескольких минут.
  • После достижения однородности смесь обрабатывается паром. При этом происходит увлажнение состава и гашение извести, что занимает около часа.
  • Силосный метод считается более экономичным, так как в ходе силосования пар не требуется. Однако данная технология является более затратной по времени.
  • При силосовании песок и известь поступают в мешалку, где увлажняются и разрыхляются до полной однородности. Затем смесь поступает в вертикальные колонны  — силосы.
  • В силосах высотой до 10 м и диаметром 3-4 м смесь находится до 10 часов. В процессе этого времени происходит гашение извести.
  • Как правило, силосы оборудуются несколькими соединенными между собой секциями, что обеспечивает непрерывность процесса подготовки силикатного сырья.
  • После завершения процесса гашения силикатная смесь разгружается из нижней части силоса через специальный конусообразный питатель.

Вне зависимости от того, каким способом была получена силикатная масса, далее она попадает на этап прессовки.

Прессование сырца

Качество готовой продукции, а именно полнотелых и пустотелых силикатных блоков, во многом зависит от того, насколько точно будет соблюдена технология при прессовке кирпича-сырца:

  • Прессовые формы наполняются силикатной массой, которая поступает либо непосредственно из питателя силоса, либо с транспортерной ленты.
  • В ряде случаев перед подачей смесь засыпается в дополнительный бункер, где происходит ее повторное перемешивание и дополнительное увлажнение.
  • Далее пресс-формы подаются на прессовальное оборудование, где происходит уплотнение массы. При уплотнении зерна песка сближаются друг с другом на минимальное расстояние, за счет чего из блока удаляется практически весь воздух и количество пустот сводится к минимуму.

Обратите внимание! Эффективность прессовки во многом зависит от влажности смеси. Каждое производство определяет этот параметр индивидуально, но в общем приемлемой величиной считают влажность около 6-7%.

  • Давление при уплотнении также играет очень важную роль. Для получения максимально прочного изделия, и при этом минимизации риска разрушения оно должно составлять около 150200 кгс/см2.
  • Спрессованные заготовки кирпича выталкиваются из форм на специальный стол. На этом этапе очень важную роль играет влажность состава, так как недостаточно увлажненные спрессованные блоки могут разваливаться при выталкивании.

После выкладки на стол специальный автомат снимает заготовки и передает их на транспортерную ленту, с которой они, в свою очередь, поступают на запарочные вагонетки.

Автоклавирование

Заключительный этап процесса изготовления данного строительного материала – запаривание в специализированных автоклавах. Современная технология автоклавирования предполагает использование специализированных вагонеток, которые позволяют одновременно обрабатывать горячим паром большое количество заготовок.

Обратите внимание! Для минимизации теплопотерь и снижения расхода топлива современные автоклавы оборудуются теплоизоляционными кожухами.

  • После поступления вагонеток в автоклав устройство закрывается и в него подается водяной пар. Оптимальная температура пара составляет около 2000С.
  • Запаривание кирпича-сырца осуществляется под давлением около 16 бар. Это позволяет повысить эффективность обработки сырья паром и улучшить эксплуатационные характеристики готовой продукции. Как правило, работа автоклава контролируется автоматикой, благодаря чему достигается высокая точность поддержания температуры и давления.

Автоклавирование проходит в три этапа:

  • Вначале к заготовкам подается высокотемпературный пар, который постепенно остывает, нагревая кирпич-сырец.
  • После того как температуры пара и заготовок уравниваются, автоматика обеспечивает поддержание постоянного уровня нагрева автоклава в течение нескольких часов. Именно в этом временном отрезке и происходит силикатная реакция.
  • Заключительный этап  — остывание заготовок. Температура пара в автоклаве постепенно снижается, чтобы минимизировать вероятность термического шока и растрескивания готовых изделий.
  • Цикл работы автоклава по запариванию одной партии кирпича составляет от 10 до 14 часов. В ряде ситуаций это время может быть увеличено до 20 часов.
  • В ходе автоклавирования происходит окончательно отвердевание силикатной смеси, после чего устройство открывается, и вагонетки извлекаются из запарочной камеры.
  • На заключительном этапе осуществляется разгрузка кирпича и складирование его на поддоны.

Вывод

Описанная в статье технологическая схема производства кирпича обеспечивает максимальное повышение его эксплуатационных характеристик. Строгое соблюдение пропорций смеси, выполнение рекомендаций по прессованию, а также  контроль температуры в автоклаве при запаривании являются обязательными условиями изготовления качественного продукта.

Именно такой силикатный кирпич может использоваться при возведении самых разных конструкций. В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

klademkirpich.ru

История[править | править код]

Слово «кирпич» заимствовано из тюркских языков[3]. Так, в одном из тюркских языков, казахском, слово қыр означает «грань», а слово пеш — «печь». Это объясняется тем, что у тюрков рано зародилась металлургия и для выплавки железа использовались печи, сложенные из огнеупорного кирпича. До кирпича в Европе и на Руси использовалась плинфа (например, при посещении Иваном Грозным недостроенного Софийского собора в Вологде на него упала плинфа: «как из своду туповатова упадала плинфа красная»). «Плинфа» — тонкая и широкая прямоугольная глиняная пластина, толщиной примерно 2,5 см. Изготавливалась в специальных деревянных формах. Плинфа сушилась 10—14 дней, затем её обжигали в печи. На многих плинфах находят клейма, которые считаются клеймами изготовителя. Хотя вплоть до нашего времени широчайшее распространение имел во многих странах необожжённый кирпич-сырец, часто с добавлением в глину резаной соломы, применение в строительстве обожжённого кирпича также восходит к глубокой древности (постройки в Египте, 3—2 тысячелетие до н. э.). Особенно важную роль играл кирпич в зодчестве Месопотамии и Древнего Рима, где из кирпича (45×30×10 см) выкладывали сложные конструкции, в том числе арки, своды и тому подобное. Форма кирпичей в Древнем Риме варьировалась, использовались в том числе прямоугольные, треугольные и круглые в плане кирпичи[4], прямоугольные плиты кирпича радиально разрезали на 6—8 частей, что позволяло из получившихся треугольных кусков класть более прочную и фигурную кладку.

Стандартный обожжённый кирпич использовался на Руси с конца XV века. Ярким примером стало строительство стен и храмов Московского Кремля во времена Иоанна III, которым заведовали итальянские мастера. «… и кирпичную печь устроили за Андрониковым монастырем, в Калитникове, в чём ожигать кирпич и как делать, нашего Русского кирпича уже да продолговатее и твёрже, когда его нужно ломать, то водой размачивают. Известь же густо мотыками повелели мешать, как на утро засохнет, то и ножём невозможно расколупить».

Привычный же нам кирпич прямоугольной формы (его удобней было держать в руке) появился в Англии в XVI веке[5].

В коллекции кирпичей (англ. American Brick Collection), подаренной в 1994 году Рэймондом Чейзом Национальному музею строительства (англ. National Building Museum) в Вашингтоне, содержится 1800 различных кирпичей, произведённых в США в конце XIX — начале XX века и отмеченных клеймом производителя[6][7].

Общая характеристика[править | править код]

Размеры кирпичей[править | править код]

Выделяют 2 основных формата кирпичей: керамические (ГОСТ 530—2012) и силикатные (ГОСТ 379—2015).

В России кирпичи единого стандарта (т. н. нормального формата (НФ)[8]), появились в 1927 году[источник не указан 700 дней]. Одним из первых общесоюзных стандартов на кирпич был ОСТ 90035-39. Нормальный формат имеет габаритные размеры 250×120×65 мм. Наименования остальных размеров являются производными от НФ:

  • 1 НФ (одинарный) — 250×120×65 мм;
  • 1.4 НФ (полуторный) — 250×120×88 мм;
  • 2.1 НФ (двойной) — 250×120×140 мм.

Изделия номинального размера 2.1 НФ и более называются керамическими камнями, размеры типовых моделей согласно ГОСТ 530—2012:

  • 4.5 — 250×250×140 мм;
  • 6.8 — 380×250×140 мм;
  • 6.0 — 250×250×188 мм[9].

Неполномерный (часть):

  • 3/4 — 180 мм;
  • 1/2 — 120 мм;
  • 1/4 — 60—65 мм.

Масса кирпичей[править | править код]

Масса кирпичей зависит в первую очередь от класса плотности изделия, всего выделяют 7 классов для керамического и силикатного кирпича.

Формула расчета массы: a*b*c*p, где первые 3 параметра — длина, ширина и толщина, p — общая плотность изделия.

Ориентировочная масса керамических кирпичей (ГОСТ 530—2012):

  • полнотелый 250×120×65 мм (2 класс плотности): от 3.315 кг до 3.705 кг;
  • пустотелый 250×120×65 мм (1.4 класс плотности): от 2.34 кг до 2.73 кг;
  • полнотелый 250×120×88 мм (2 класс плотности): от 4.488 (кг) до 5.016 (кг);
  • пустотелый 250×120×88 мм (1.4 класс плотности): от 3.168 (кг) до 3.696 (кг);
  • полнотелый 250×120×140 мм (2 класс плотности): от 7.038 (кг) до 7.866 (кг);
  • пустотелый 250×120×140 мм (1.4 класс плотности): от 4.968 (кг) до 5.796 (кг)[10].

Названия сторон[править | править код]

Согласно ГОСТ 530—2012, грани кирпича имеют следующие названия[8]:

  • Постель — рабочая сторона изделия, расположенная параллельно основанию кладки (на примере 1 НФ это часть с размерами 250×120 мм);
  • Ложок — средняя по площади сторона изделия, расположенная перпендикулярно к постели[8] (у 1 НФ — 250×65 мм);
  • Тычок — наименьшая сторона изделия, расположенная перпендикулярно к постели[8] (у 1 НФ — 120×65 мм).

Кирпич с криволинейным ложком или тычком называется лекальным.

Клейма на кирпиче[править | править код]

Клеймо на кирпиче ставит завод-изготовитель. В старину производили кирпич ручной формовки. Старинный кирпич имеет различные клейма. Они могут быть выполнены в виде символов или букв. Как правило, это сокращение инициалов хозяина завода. При строительстве казённых предприятий завод, выигравший поставку, мог ставить клеймо в виде двуглавого орла. Такой старинный кирпич в народе получил название «имперский кирпич». В Санкт—Петербурге встречается самое большое количество различных клейм. На кирпичах можно встретить клеймо в виде ключа, короны, орла, якоря, подковы, название рек, городов и различных фамилий. На заводе клеймо могло видоизменяться. Зачастую заводы переходили от одного собственника к другому. Поэтому один и тот же завод мог за свою историю выпускать разнообразные клейма. Известны случаи, когда кирпичный завод переходил от отца к сыну и клеймо видоизменялось с сохранением фамилии, но изменением дизайна. Одним из самых известных заводов, выпускающих кирпичи с клеймом, был завод купцов Стрелиных.

Современный кирпич[править | править код]

Современное кирпичное производство ставит клейма на различных поверхностях кирпича (ложок, тычок, постель). В прошлых веках клеймо ставили в основном на постель.

Виды кирпича и их преимущества[править | править код]

Кирпич делится на две большие группы: красный и белый. Красный кирпич состоит в основном из глины, белый — из песка и извести. Смесь последнего была названа «силикатной», а отсюда и силикатный кирпич.

Силикатный кирпич[править | править код]

«Готовить» силикатный кирпич стало возможно только после развития новых принципов производства искусственных строительных материалов. В основе такого изготовления заложен так называемый автоклавный синтез: 9 долей кварцевого песка, 1 доля воздушной извести и добавки после полусухого прессования (таким образом, создаётся форма кирпича) подвергаются автоклавной обработке (воздействие водяного пара при температуре 170—200 °С и давления 8—12 атм.). Если к этой смеси добавляются атмосферостойкие, щелочестойкие пигменты, то получается цветной силикатный кирпич.

Преимущества силикатного кирпича[править | править код]

  • Экологичность Силикатный кирпич изготовлен из экологически чистого натурального сырья — извести и песка, по технологии, знакомой человечеству несколько столетий.
  • Звукоизоляция. Это играет немаловажную роль при возведении межквартирных или межкомнатных стен. Силикатный кирпич применяют для кладки стен и столбов в гражданском и промышленном строительстве.
  • Высокая морозостойкость и прочность. Силикатный кирпич по прочности и морозостойкости значительно превосходит марки легких бетонов. На построенные из него фасады строители дают гарантию 50 лет.
  • Надёжность и широкий ассортимент. Надёжность и широкий ассортимент силикатного кирпича позволяет использовать его как в новом строительстве, так и при реконструкции. Фактурный, цветной силикатный кирпич украсит фасады как общественных, жилых зданий, так и загородных коттеджей, дач.
  • Тип окраски. Цветной силикатный кирпич окрашивается в массе так же, как и керамический кирпич. Но, в отличие от керамического кирпича, окраска силикатного может производиться только с помощью специальных искусственных красителей, а керамический кирпич приобретает определённый цвет в результате смешения разных сортов глины.
  • Неприхотливость. Строения из силикатного кирпича неприхотливы и устойчивы ко внешним факторам. Капризы природы не оказывают существенного влияния на его внешний вид, Фасад сохраняет цвет и не требует дополнительного ухода, за исключением случаев использования в агрессивных средах или в условиях повышенной влажности.
  • Цена[11]

Недостатки силикатного кирпича[править | править код]

  • Серьёзным недостатком силикатного кирпича является пониженная водостойкость и жаростойкость, поэтому его нельзя использовать в конструкциях, подвергающихся воздействию воды (фундаменты, канализационные колодцы и др.) и высоких температур (печи, дымовые трубы и др.).

Применение силикатного кирпича[править | править код]

Силикатный кирпич обычно применяется для возведения несущих и самонесущих стен и перегородок, одноэтажных и многоэтажных зданий и сооружений, внутренних перегородок, заполнения пустот в монолитно-бетонных конструкциях, наружной части дымовых труб.

Керамический кирпич[править | править код]

Керамический кирпич обычно применяется для возведения несущих и самонесущих стен и перегородок, одноэтажных и многоэтажных зданий и сооружений, внутренних перегородок, заполнения пустот в монолитно-бетонных конструкциях, кладки фундаментов, внутренней части дымовых труб, промышленных и бытовых печей.

Керамический кирпич подразделяется на рядовой (строительный) и лицевой. Последний применяется практически во всех областях строительства.

Лицевой кирпич изготавливается по специальной технологии, которая придаёт ему массу преимуществ. Лицевой кирпич должен быть не только красивым, но и надёжным. Облицовочный кирпич обычно применяется при возведении новых зданий, но также с успехом может быть использован и в различных реставрационных работах. Его используют при облицовке цоколей здaний, стен, заборов, для внутреннего дизайна.

Преимущества керамического рядового кирпича[править | править код]

  • Прочен и износостоек. Керамический кирпич обладает высокой морозостойкостью, что подтверждается многолетним опытом его применения в строительстве.
  • Хорошая звукоизоляция — стены из керамического кирпича, как правило, соответствуют требованиям [СП] 51.13330.2011 «Защита от шума»..
  • Низкое влагопоглощение (менее 14 %, а для клинкерного кирпича этот показатель может достигать 3 %) — Более того, керамический кирпич быстро высыхает.
  • Экологичность Керамический кирпич изготовлен из экологически чистого натурального сырья — глины, по технологии, знакомой человечеству десятки веков. Во время эксплуатации построенных из него зданий, красный кирпич не выделяет вредных для человека веществ, таких как газ радон.
  • Устойчивость почти ко всем климатическим условиям, что позволяет сохранять надёжность и внешний вид.
  • Высокая прочность (15 МПа и выше — 150 атм.).
  • Высокая плотность (1950 кг/м³, до 2000 кг/м³ при ручной формовке).

Преимущества керамического облицовочного кирпича[править | править код]

  • Морозостойкость. Облицовочный кирпич обладает высокой морозостойкостью, а для северного климата это особенно важно. Морозостойкость кирпича является наряду с прочностью важнейшим показателем его долговечности. Керамический облицовочный кирпич идеально подходит для российского климата.
  • Прочность и устойчивость. Благодаря высокой прочности и малому объёму пористости кладка, возводимая из облицовочных изделий, отличается высокой прочностью и поразительной устойчивостью к воздействию окружающей среды.
  • Различная фактура и цветовая гамма. Диапазон различных форм и цветов облицовочного кирпича даёт возможность создания имитации старинных построек при возведении современного дома, а также позволит возместить утраченные фрагменты фасадов старинных особняков.

Недостатки керамического кирпича[править | править код]

  • Высокая цена. В связи с тем, что керамический кирпич требует несколько этапов обработки, его цена довольно высокая, по сравнению с ценой силикатного кирпича.
  • Возможность появления высолов. В отличие от силикатного кирпича, керамический кирпич «требует» качественный раствор, в противном случае могут появляться высолы.
  • Необходимость приобретать весь требуемый облицовочный кирпич из одной партии. Если облицовочный керамический кирпич приобретается из разных партий, могут возникнуть проблемы с тоном.

Технология производства[править | править код]

До XIX века техника производства кирпичей оставалась примитивной и трудоёмкой. Формовали кирпичи вручную, сушили исключительно летом, а обжигали в напольных печах-времянках, выложенных из высушенного кирпича-сырца. В середине XIX века была построена кольцевая обжиговая печь, а также ленточный пресс, обусловившие переворот в технике производства. В конце XIX века стали строить сушилки. В это же время появились глинообрабатывающие машины: бегуны, вальцы, глиномялки.

В наше время более 80 % всего кирпича производят предприятия круглогодичного действия, среди которых имеются крупные механизированные заводы, производительностью свыше 200 млн штук в год.

Организация кирпичного производства[править | править код]

Керамический кирпич[править | править код]

Необходимо создание условий для обеспечения основных параметров производства:

  • постоянного или среднего состава глины;
  • равномерной работы производства.

В кирпичном производстве результата добиваются только после длительных экспериментов с режимами сушки и обжига. Эта работа должна проводиться при постоянных основных параметрах производства.

Глина[править | править код]

Хороший (лицевой) керамический кирпич производится из глины, добытой мелкой фракцией с постоянным составом минералов. Месторождения с однородным составом минералов и многометровым слоем глины, пригодным для добычи одноковшовым экскаватором, очень редки и почти все разработаны.

Большинство месторождений содержит многослойную глину, поэтому лучшими механизмами, способными при добыче делать глину среднего состава, считаются многоковшовый и роторный экскаваторы. При работе они срезают глину по высоте забоя, измельчают её, и при смешивании получается средний состав. Другие типы экскаваторов не смешивают глину, а добывают её глыбами.

Постоянный или средний состав глины необходим для подбора постоянных режимов сушки и обжига. Для каждого состава нужен свой режим сушки и обжига. Один раз подобранные режимы позволяют получать высококачественный кирпич из сушилки и печи годами.

Качественный и количественный состав месторождения выясняется в результате разведки месторождения. Только разведка выясняет минеральный состав: какие суглинки пылеватые, глины легкоплавкие, глины тугоплавкие и т. д. содержатся в месторождении.

Лучшими глинами для производства кирпича считаются те глины, которые не требуют добавок. Для производства кирпича обычно используется глина, непригодная для других керамических изделий.

Сушилки камерные[править | править код]

Сушилки загружаются кирпичом полностью, и в них постепенно изменяется температура и влажность по всему объёму сушилки, в соответствии с заданной кривой сушки изделий.

Сушилки туннельные[править | править код]

Сушилки загружаются постепенно и равномерно. Вагонетки с кирпичом продвигаются через сушилку и проходят последовательно зоны с разной температурой и влажностью. Туннельные сушилки лучше всего применять для сушки кирпича из сырья среднего состава. Применяются при производстве однотипных изделий строительной керамики. Очень хорошо «держат» режим сушки при постоянной и равномерной загрузке кирпича-сырца.

Процесс сушки[править | править код]

Глина — это смесь минералов, состоящая по массе более чем на 50 % из частиц до 0,01 мм. К тонким глинам относятся частицы менее 0,2 мкм, к средним 0,2—0,5 мкм и крупнозернистым 0,5—2 мкм. В объёме кирпича-сырца есть множество капилляров сложной конфигурации и разных размеров, образованных глинистыми частицами при формовке.

Глины дают с водой массу, которая после высыхания сохраняет форму, а после обжига приобретает свойства камня. Пластичность объясняется проникновением воды, хорошего природного растворителя, между отдельными частицами минералов глины. Свойства глины с водой важны при формовке и сушке кирпича, а химический состав определяет свойства изделий во время обжига и после обжига.

Чувствительность глины к сушке зависит от процентного соотношения «глинистых» и «песчаных» частиц. Чем больше в глине «глинистых» частиц, тем труднее удалить воду из кирпича-сырца без образования трещин при сушке и тем больше прочность кирпича после обжига. Пригодность глины для производства кирпича определяется лабораторными испытаниями.

Если в начале сушилки в сырце образуется много паров воды, то их давление может превысить предел прочности сырца и появится трещина. Поэтому температура в первой зоне сушилки должна быть такой, чтобы давление паров воды не разрушало сырец. В третьей зоне сушилки прочность сырца достаточна для повышения температуры и увеличения скорости сушки.

Режимные характеристики сушки изделий на заводах зависят от свойств сырья и конфигурации изделий. Существующие на заводах режимы сушки нельзя рассматривать как неизменные и оптимальные. Практика многих заводов показывает, что длительность сушки можно значительно сокращать, пользуясь методами ускорения внешней и внутренней диффузии влаги в изделиях.

Кроме того, нельзя не учитывать свойства глиняного сырья конкретного месторождения. Именно в этом и заключается задача заводских технологов. Нужно подобрать такую производительность линии формовки кирпича и режимы работы сушилки кирпича, при которых обеспечивается высокое качество сырца при максимально достижимой производительности кирпичного завода.

Процесс обжига[править | править код]

Глина представляет смесь легкоплавких и тугоплавких минералов. При обжиге легкоплавкие минералы связывают и частично растворяют тугоплавкие минералы. Структура и прочность кирпича после обжига определяется процентным соотношением легкоплавких и тугоплавких минералов, температурой и продолжительностью обжига.

В процессе обжига керамического кирпича легкоплавкие минералы образуют стекловидную, а тугоплавкие кристаллическую фазы. С повышением температуры всё более тугоплавкие минералы переходят в расплав, возрастает содержание стеклофазы. С увеличением содержания стеклофазы повышается морозостойкость и снижается прочность керамического кирпича.

При увеличении длительности обжига возрастает процесс диффузии между стекловидной и кристаллической фазами. В местах диффузии возникают большие механические напряжения, так как коэффициент термического расширения тугоплавких минералов больше коэффициента термического расширения легкоплавких минералов, что и приводит к резкому снижению прочности.

После обжига при температуре 950—1050 °C доля стекловидной фазы в керамическом кирпиче должна составлять не более 8—10 %. В процессе обжига подбираются такие температурные режимы обжига и продолжительность обжига, чтобы все эти сложные физико-химические процессы обеспечивали максимальную прочность керамического кирпича.

Силикатный кирпич[править | править код]

Песок[править | править код]

Основным компонентом силикатного кирпича (85-90 % по массе) является песок, поэтому заводы силикатного кирпича размещают, как правило, вблизи месторождений песка, и песчаные карьеры являются частью предприятий. Состав и свойства песка определяют во многом характер и особенности технологии силикатного кирпича.

Песок — это рыхлое скопление зёрен различного минерального состава размером 0,1 — 5 мм. По происхождению пески разделяют на природные и искусственные. Последние, в свою очередь, разделяют на отходы при дроблении горных пород (хвосты от обогащения руд, высевки щебеночных карьеров и т. п.), дробленые отходы от сжигания топлива (песок из топливных шлаков), дробленые отходы металлургии (пески из доменных и ватержакетных шлаков).

Форма и характер поверхности зерен песка имеют большое значение для формуемости силикатной смеси и прочности сырца, а также влияют на скорость реакции с известью, начинающейся во время автоклавной обработки на поверхности песчинок.

При грубой шихтовке песков в карьере проверяют, в какой пропорции загружают вагонетки или автосамосвалы песками различной крупности в каждом забое. При наличии нескольких приемных бункеров для разных фракций песка необходимо проверять заданную пропорцию песков в шихте по количеству питателей одинаковой производительности, одновременно выгружающих пески различной крупности.

Песок, поступающий из забоя до его употребления в производство, должен быть отсеян от посторонних примесей — камней, комочков глины, веток, металлических предметов и т. п. Эти примеси в процессе производства вызывают брак кирпича и даже поломки машин, поэтому над песочными бункерами устанавливают барабанные грохоты.

Известь[править | править код]

Известь является второй составной частью сырьевой смеси, необходимой для изготовления силикатного кирпича.

Сырьём для производства извести являются карбонатные породы, содержащие не менее 95 % углекислого кальция CaCO3. К ним относятся известняк плотный, известняковый туф, известняк-ракушечник, мел, мрамор. Все эти материалы представляют собой осадочную горную породу, образовавшуюся главным образом в результате отложения на дне морских бассейнов продуктов жизнедеятельности животных организмов.

Известняк состоит из известкового шпата-кальцита и некоторого количества различных примесей: углекислого магния, солей железа, глины и др. От этих примесей зависит окраска известняка. Обычно он бывает белым или разных оттенков серого и жёлтого цвета. Если содержание глины в известняках более 20 %, то они носят название мергелей. Известняки с большим содержанием углекислого магния называются доломитами.

Мергель является известково-глинистой породой, которая содержит от 30 до 65 % глинистого вещества. Следовательно, наличие в нём углекислого кальция составляет всего 35 — 70 %. Понятно, что мергели совершенно не пригодны для изготовления из них извести и поэтому не применяются для этой цели.

Доломиты, так же как известняки, относятся к карбонатным горным породам, состоящим из минерала доломита (СаСО3*МgСО3). Так как содержание в них углекислого кальция менее 55 %, то для обжига на известь они также непригодны. При обжиге известняка на известь употребляют только чистые известняки, не содержащие большого количества вредных примесей в виде глины, окиси магния и др.

По размерам кусков известняки для обжига на известь делятся на крупные, средние и мелкие. Содержание мелочи в известняке определяют, просеивая породу через грохоты.

Основным вяжущим материалом для производства силикатных изделий является строительная воздушная известь. По химическому составу известь состоит из окиси кальция (СаО) с примесью некоторого количества окиси магния (МgО).

Различают два вида извести: негашеную и гашеную; на заводах силикатного кирпича применяется негашеная известь. При обжиге известняк под влиянием высокой температуры разлагается на углекислый газ и окись кальция и теряет 44 % своего первоначального веса. После обжига известняка получается известь комовая (кипелка), имеющая серовато-белый, иногда желтоватый цвет.

При взаимодействии комовой извести с водой происходят реакции гидратации СаО+ Н2О = Са(ОН)2; МgО+Н2О=Мg(ОН)2 или, по другому — гашение извести. Реакции гидратации окиси кальция и магния идут с выделением тепла. Комовая известь (кипелка) в процессе гидратации увеличивается в объёме и образует рыхлую, белого цвета, легкую порошкообразную массу гидрата окиси кальция Са(ОН)2. Для полного гашения извести необходимо добавлять к ней воды не менее 69 %, то есть на каждый килограмм негашеной извести около 700 г воды. В результате получается совершенна сухая гашеная известь (пушонка). Её так же называют воздушной известью. Если гасить известь с избытком воды, получается известковое тесто.

Известь нужно хранить только в крытых складских помещениях, предохраняющих её от воздействия влаги. Не рекомендуется длительное время хранить известь на воздухе, так как в нём всегда содержится небольшое количество влаги, которая гасит известь. Содержание в воздухе углекислого газа приводит к карбонизации извести, то есть соединению с углекислым газом и тем самым частичному снижению её активности.

Силикатная масса[править | править код]

Известково-песчаную смесь готовят двумя способами: барабанным и силосным.

Силосный способ приготовления массы имеет значительные экономические преимущества перед барабанным, так как при силосовании массы на гашение извести не расходуется пар. Кроме того, технология силосного способа производства значительно проще технологии барабанного способа. Подготовленные известь и песок непрерывно подаются питателями в заданном соотношении в одновальную мешалку непрерывного действия и увлажняются водой. Перемешанная и увлажненная масса поступает в силосы, где выдерживается от 4 до 10 часов, в течение которых известь гасится.

Силос представляет собой цилиндрический сосуд из листовой стали или железобетона; высота силоса 8 — 10 м, диаметр 3,5 — 4 м. В нижней части силос имеет конусообразную форму. Силос разгружается при помощи тарельчатого питателя на ленточный транспортёр. При этом происходит большое выделение пыли.

При вылёживании в силосах масса часто образует своды; причина этого — относительно высокая степень влажности массы, а также уплотнение и частичное твердение её при вылёживании. Наиболее часто своды образуются в нижних слоях массы, у основания силоса. Для лучшей разгрузки силоса необходимо сохранять возможно меньшую влажность массы. Силосы разгружаются удовлетворительно лишь при влажности массы в 2 — 3 %. Силосная масса при выгрузке более пылит, чем масса, полученная по барабанному способу; отсюда более тяжелые условия для работы обслуживающего персонала.

Работа силоса протекает следующим образом: внутри силос разделен перегородками на три секции. Масса засыпается в одну из секций в течение 2,5 часов, столько же требуется и для разгрузки секции. К моменту заполнения силоса нижний слой успевает вылежаться в течение того же времени, то есть около 2,5 часов. Затем секция выстаивается 2,5 часа, и после этого её разгружают. Таким образом, нижний слой гасится около 5 часов.

Так как разгрузка силосов происходит только снизу, а промежуток между разгрузками составляет 2,5 часа, то и все последующие слои также выдерживаются в течение 5 часов в непрерывно действующих силосах.

Прессование кирпича-сырца[править | править код]

На качество кирпича и его прочность наиболее существенно влияет давление, которому подвергается силикатная масса во время прессования. В результате прессования происходит уплотнение силикатной массы.

Процесс прессования кирпича складывается из следующих основных операций: наполнения прессовых коробок массой, прессования сырца, выталкивания сырца на поверхность стола, снятия сырца со стола, укладки сырца на запарочные вагонетки.

После прессования полученные кирпичи автоматом-укладчиком укладываются на вагонетки, которые транспортируются в автоклавы, где производится тепло-влажная обработка кирпича.

Автоклавная обработка[править | править код]

Для придания необходимой прочности силикатному кирпичу его обрабатывают насыщенным паром. Полный технологический цикл запаривания кирпича в автоклаве состоит из операций очистки и загрузки автоклава, закрывания и закрепления крышек, перепуска пара; впуска острого пара, выдержки под давлением, второго перепуска, выпуска пара в атмосферу, открывания крышек и выгрузки автоклава. Совокупность всех перечисленных операций составляет цикл работы автоклава, который равен 10—13 часов.

Из автоклава силикатный кирпич поступает на открытую площадку, где складируется и отгружается потребителям.

Биокирпич[править | править код]

Изготавливается из биоцемента в ходе микробиологической преципитации карбоната кальция[12]. Для его получения используются бактерии Sporosarcina pasteurii, песок, хлорид кальция и мочевина.

См. также[править | править код]

  • Огнеупорный кирпич
  • Красный кирпич
  • Лицевой кирпич
  • Силикатный кирпич
  • Клинкерный кирпич
  • Тротуарный кирпич
  • Свинцовый кирпич
  • Саман
  • Кронштейн для крепления облицовки зданий кирпичом
  • Кирпичная кладка

ru.wikipedia.org

Силикатный кирпич производство

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector