Используемые виды

Актуальность именно такого выбора подтверждается его неоспоримыми преимуществами. Среди них экологичность, морозостойкость, пожароустойчивость — и все это уже не говоря о прочности и долгой службе, которая подразумевается априори. Наряду с этим при возведении объектов важно учитывать теплопроводность кирпичной стены.

В настоящее время активно распространены несколько видов. Среди них выделяют следующие:

  •  белый (силикатного типа);
  •  (глиняный).

Подобные блоки могут быть самой различной формы и фактуры. Похожи они только своими геометрическими параметрами. На самом деле различия гораздо глубже:

  1. В составе керамического лежит глина и различные добавки.
  2. Силикатный получают из кварцевого песка, извести и воды.

Теплопроводность красного кирпича (керамического типа) имеет настоящее народное признание. И это неспроста: он встречается в самых различных интерпретациях (пусто- и полнотелый, облицовочный и имеющий интересную фактуру), но каждое из них будет уникальным и подойдет для возведения любого типа зданий.

Состав и назначение в использовании

Здесь принята градация. Она идет по следующим функциям:

  • строительная (возводят поверхности);
  •  специальная (для сооружения печной трубы, камина или простой печи);
  •  облицовочная (с его помощью облагораживают фасады).

Если решено использовать полнотелый вид, то следует знать, что в таком блоке будет не больше 13% пустот и он подойдет для того, чтобы возводить поверхности, колонн, столбов и так далее. Как повлияет на характеристики кирпича теплопроводность? В этом случае нельзя сказать о слишком больших данных по сопротивлению к отдаче тепла (в связи с этим стены домов необходимо будет дополнительно утеплять).

Теплопроводность пустотелого керамического кирпича во много раз больше. Это связано с тем, что объем его пустот достигает 45% от общего. Все это сказывается в его весе, который гораздо меньше предыдущего вида. Такие блоки можно смело использовать в строительстве как внутренних перегородок, так и внешних фасадов. Им обычно принято заполнять каркасы у зданий с большим количеством этажей. Главный бонус здесь будет заключаться в том, что теплопроводность клинкерного кирпича с пустотами внутри имеет отличные показатели (но это правило действует в том случае, когда раствор делают достаточно густым, чтобы он не забивал воздушные полости).

Коэффициент теплоотдачи кирпича: общие сведения

Теплопроводность кирпича характеризуется способностью проводить энергию тепла. Такой «талант» принято выводить в специальном показателе. Каждый вид будет представлять свои данные в этом отношении:


  1. Клинкерный кирпич теплопроводность имеет в диапазоне от 0,8 до 0,9 Вт/м К.
  2. Теплопроводность силикатного кирпича зависит от количества содержащихся в нем пустот (для щелевого он будет равен 0,4 Вт/м К), у имеющего технические пустоты цифра поднимается до 0,66, а у полнотелого варианта данные уже будут составлять 0,8 Вт/м К.
  3. Керамический кирпич коэффициент теплопроводности также имеют разный (в зависимости от представленного вида): коэффициент теплопроводности полнотелого кирпича дает цифры от 0,5 до 0,8, щелевой имеет 0,34-0,43, а поризованный — 0,22 Вт/м К. Теплопроводность керамического кирпича с порами внутри будет равна примерно 0,57 Вт/м К (однако даже эти цифры могут зависеть от пор, расположенных в нем).

В рамках этого анализа обязательно надо отметить, что коэффициент теплопередачи кирпича еще не самый высокий — газобетон, к примеру, еще лучший проводник. Чтобы возводимые здания были по-настоящему теплыми, нужно при возведении сочетать многие составляющие, главным из которых будет количество пор.

Все познается в сравнении: возможности использования

Цифры могут варьироваться у каждого из вышепредставленных видов. Свой коэффициент теплопроводности силикатный кирпич зарабатывает еще и от веса каждого из блоков. Отсюда вывод: если решено строить именного из него, то следует обращать внимание на размеры брусков (меньше размер — больше коэффициент теплопроводности силикатного кирпича). Нельзя забывать одну главную вещь: при относительной дешевизне такого товара, к нему должны идти еще и дополнительные утеплители.


Коэффициент перевода кирпича-клинкера показывает прекрасные данные. Но даже с ними его очень редко выбирают для того, чтобы возвести поверхность. А вот мощение дорожного полотна или полы в помещениях пройдут на «ура». И уже сам высокий коэффициент теплопроводности кирпича такого вида указывает на то, что его не следует брать для того, чтобы возвести какие-либо утепленные конструкции.

Когда речь идет именно о специальном виде, нельзя не упомянуть тот материал, который используется для строительства каминов и им подобных вещей. Его состав предполагает быструю отдачу тепла, а, значит, коэффициент теплопроводности шамотного кирпича будет колебаться от 0,6 до 0,7 Вт/(моС).

Исходя из всего вышесказанного, можно сделать главный вывод — самым популярным для использования будет являться пустотный, а коэффициент теплопроводности кирпича красного позволяет его выделить среди других в качестве примера, какой должна быть теплопроводность глиняного кирпича. Развитая пустотная система внутри него справится с этим на «отлично».

stroykirpich.com

Коэффициент теплопроводности кирпичей


Данный коэффициент обозначается буквой λ и выражается в W/(m*K).

Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:

  1. Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
  2. Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
  3. Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
  4. Силикатный, с техническими пустотами λ= 0,66.
  5. Керамический кирпич пустотелого исполнения λ= 0,57.
  6. Керамический кирпич щелевого типа λ= 0,4.
  7. Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
  8. Керамический поризованный λ= 0,22.
  9. Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.

Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003.

Теплопроводность кладки

Теплосопротивление кирпичей является важнейшим коэффициентом и в ряде случаев является определяющим параметром при проектировании здания и выбора кладки. Вместе с тем, сопротивлениеteploprovodnost-kladki_1 теплоотдачи сооружения зависит не только от показателя λ используемых кирпичей, но и от применяемого строительного раствора.

Наиболее частым является случай, когда теплосопротивление раствора существенно ниже, чем сопротивление кирпича.

Так, коэффициент теплоотдачи раствора на основе цемента и песка равен 0,93 W/(m*K), а цементно-шлакового раствора – 0,64.

Путем суммирования коэффициентов сопротивления теплоотдаче кирпича и раствора разработаны специальные таблицы коэффициента теплопередачи, которые можно посмотреть в ГОСТе 530-2007. Ниже приведена выдержка из таблицы:

Таблица – Теплопроводность кладки


Тип кирпича Тип раствора Теплоотдача
Глиняный Цементно-песчаный 0,81
Цементно-шлаковый 0,76
Цементно-перлитовый 0,7
Силикатный Цементно-песчаный 0,87
Керамический пустотный 1,4т/м3 Цементно-песчаный 0,64
Керамический пустотный 1,3т/м3 0,58
Керамический пустотный 1,0т/м3 0,52
Силикатный, 11-ти пустотный Цементно-песчаный 0,81
Силикатный, 14-ти пустотный 0,76

Расчет стены

Для того, чтобы использовать коэффициент теплосопротивления кирпичной стенки на практике, необходимо воспользоваться следующей формулой:

r = (толщина кладки, м)/(теплоотдача, W/(m * K)),

где r – сопротивление теплоотдаче кирпичной стены. При расчетах также необходимо учитывать степень влажности помещения и климатический регион.

Уменьшение коэффициента теплоотдачи стены

В ряде случаев коэффициент λ оставляет желать много лучшего. К тому же нарушение технологии строительства может привести к изменению теплоотдачи в большую сторону. Если применять жидкий раствор при возведении стены из щелевого кирпича, то связующий материал проникнет в пустоты и отрицательно скажется на показателях теплосбережения (сопротивление теплопередаче уменьшится).

Что делать, чтобы увеличить сопротивление теплоотдаче?

Методы уменьшения теплопередачи стены:


  1. Применение более энергосберегающих материалов (кирпичей с большей степенью пустотности).
  2. При строительстве из щелевого кирпича применять густой раствор.
  3. Прокладывание во внутреннем слое теплоизолирующих материалов. На рынке представлен огромный выбор теплоизоляции. Из наиболее популярных можно назвать стекло- и минераловатные материалы, пенополистирол, керамзит и другие. При применении утеплителей необходимо обеспечить пароизоляцию стены, чтобы избежать разрушения материалов.
  4. Оштукатуривание поверхности.

pluskirpich.ru

Краткое описание закона Фурье

Теплопроводность, как и водопоглощение или морозостойкость кирпича, играет очень важную роль при выборе строительного материала, необходимого для возведения несущих стен, каких-либо облицовочных работ, кирпичной кладки при устройстве межкомнатных перегородок. Изделие не только позволяет создать неповторимый стиль, но и обеспечивает тепло и уют в доме. Этот фактор является важным при его выборе.


Коэффициент теплопроводности силикатного кирпича Закон Фурье при расчете теплопроводности.

Показатели, позволяющие анализировать тепловой поток, находятся под влиянием различных температур. Это объясняется постепенным переходом тепловой энергии из горячего состояния в холодное. Если температура довольно высокая, то данный процесс можно наблюдать открыто. При высокоинтенсивной передаче тепла наблюдается градация в уровне температур.

Чтобы глубже исследовать теплопроводность и тепловой поток, учитывая площадь поперечного сечения, ученый Фурье открыл закон, который показывает, по каким причинам материалы способны прекрасно задерживать тепло, улучшая свою изоляцию. Степень переноса теплоты может быть обозначена специальным коэффициентом (КТ) — λ.

Значение тепловой энергии измеряется в таких единицах, как ватт, сокращенно Вт. Этот показатель способен уменьшать свой уровень на 1°С в результате прохождения расстояния в 1 мм при температурном различии. В процессе лабораторных исследований Фурье было обнаружено, что чем меньше коэффициент теплопроводности, тем выше уровень сохранения тепла строительным материалом, поэтому его можно отнести к более теплому.

Данный показатель, который важен в строительстве, в наибольшей степени обусловлен плотностью строительной продукции. Если уровень значения плотности материала понижается, это приводит к снижению его теплового показателя. Для плотных тяжелых экземпляров характерно повышенное значение коэффициента.


Если строительный материал обладает более легким весом и меньшей прочностью, то его величина является небольшой. Коэффициент, который зависит от плотности строительного материала, находится под влиянием таких характеристик, как водопоглощение кирпича и его морозостойкость.

Уровень показателя силикатных изделий

Коэффициент теплопроводности силикатного кирпича Теплопроводность основных видов кирпичей, и другие характеристики кирпича.

Сфера применения силиката зависит от его качественных характеристик. Сюда входят теплопроводность, водопоглощение и морозостойкость кирпича. Силикат обладает повышенной склонностью к водопоглощению, поэтому он не используется при кладке фундаментов, подвалов или цоколей, так как эти сооружения имеют высокий уровень влажности.

Сухой силикатный материал обладает теплопроводностью (Т), составляющей 0,8 Вт/м*К. Керамические изделия имеют более высокую величину данного параметра, поэтому Т кладки сооружений из них составляет 0,9 Вт/м*К, что на 0,2 Вт/м*К больше, чем в первом случае. Показатель, составляющий 0,35-0,70 Вт/(м°С), а также средняя плотность сухого силикатного кирпича находятся в линейной зависимости, поэтому данная величина не зависит от количества и расположения пустот.


Силикатные изделия имеют значение теплового показателя переноса энергии меньше, чем керамические, поэтому они применяются для отделки фасадов. Для получения теплоэффективных стен применяется многопустотный силикатный кирпич, а также камень. Их плотность не более 1450 кг/м³. Эффект достигается только при аккуратном ведении кирпичной кладки, предполагающей использование нежирного кладочного раствора, который наносится тонким слоем и имеет плотность не более 1800 кг/м³. Раствор не должен заполнять пустоты в изделии.

Величина показателя красного кирпича

Для полнотелого красного кирпича характерна самая низкая способность к сохранению тепла, составляющая 0,6-0,8 Вт/м*К. По этой причине возводить энергоэкономичные сооружения целесообразно из пустотелых изделий. Их показатели теплопроводности намного ниже и составляют около 0,56 Вт/м*К.

Теплопроводность кирпича зависит не только от производственной технологии. Этот показатель находится в зависимости от множества факторов: влажности, объемного веса, пористости (размера пор материала). Достаточная плотность и пустотность этого изделия, составляющая 40-50%, соответствует показателю Т, равному 0,2-0,3 Вт/м*К. При этом толщина стен должна быть значительно меньше, чем в постройках из силиката.

Коэффициент теплопроводности, единица измерения которого исчисляется в ваттах, определяет количество тепла, способного проникнуть через кирпичную стену, имеющую метровую толщину.

Разница температуры должна составлять в 1°C по обе стороны стены. Чем выше данное значение, тем хуже характеристики коэффициента.

Наиболее важным свойством шамотного кирпича является тепловой эффект, что следует учитывать в процессе кладки печей и каминов. Чтобы обеспечить тепло в жилье, необходимо выбирать строительные материалы, обладающие низким коэффициентом теплопроводности, единицей измерения которого являются Вт/м°С или Вт/м*К.

Заключение

Показатель указывает на то, до какой степени может сохраняться тепло кирпичных стен сооружения. Это свойство объясняет, как данный материал не только проводит, но и передает тепло. Определить этот показатель можно с помощью коэффициента теплопроводности кирпича, который был получен на основе лабораторных исследований ученых.

Еще статьи по теме:

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Коэффициент теплопроводности силикатного кирпича

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м 3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины. составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Сравнение кирпича по теплопроводности при 15…25°С

Плотность, кг/м 3

Теплопроводность кирпича также зависит от его структуры и формы:

  • пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
  • полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С.

Теплопроводность огнеупорного кирпича в зависимости от температуры

Плотность, кг/м 3

Теплопроводность, Вт/(м·град) при температуре, °С

  1. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина и др.; под ред. И. С. Григорьева — М. Энергоатомиздат, 1991 — 1232 с.
  2. В. Блази. Справочник проектировщика. Строительная физика. М. Техносфера, 2004 .
  3. Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М. Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  4. Михеев М. А. Михеева И. М. Основы теплопередачи. М. Энергия, 1977 — 344 с .
  5. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е. И. М. «Металлургия», 1975 — 368 с.
  6. Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М. Атомиздат. 1979 — 212 с.
  7. Чиркин В.С. Теплофизические свойства материалов ядерной техники. Справочник .

Коэффициент теплопроводности силикатного кирпича

Коэффициент теплопроводности силикатного кирпича

Коэффициент теплопроводности силикатного кирпича

Добавить комментарий Отменить ответ

Коэффициент теплопроводности силикатного кирпича

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Коэффициент теплопроводности силикатного кирпича

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Коэффициент теплопроводности силикатного кирпича

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Коэффициент теплопроводности силикатного кирпича

Теплопроводность стали и чугуна В таблице представлены значения теплопроводности стали и чугуна. Теплопроводности сталей даны…

Коэффициент теплопроводности силикатного кирпича

Сравнительная таблица теплопроводности высокотемпературной теплоизоляции различных производителей с температурой применения до 1000-1260°С…

Коэффициент теплопроводности силикатного кирпича

Критериальные уравнения теплообмена при теплоотдаче в трубах и каналах в случаях вынужденной и свободной конвекции с примерами расчета теплоотдачи…

Коэффициент теплопроводности силикатного кирпича

Представлены сведения о химических и физических свойствах карбидов металлов: таких, как гафний, хром, титан, вольфрам…

Коэффициент теплопроводности силикатного кирпича

Температурные коэффициенты линейного расширения стали (более 300 марок стали в таблицах) при температурах от -269 до 1000°С…

Коэффициент теплопроводности силикатного кирпича

Теплопроводность и плотность алюминия В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства…

Коэффициент теплопроводности силикатного кирпича

Представлена таблица свойств дизельного топлива в зависимости от температуры. Даны следующие свойства: плотность дизтоплива ρ в…

Коэффициент теплопроводности силикатного кирпича

В таблице представлены теплофизические свойства фреона-134a на линии насыщения в жидком состоянии и в состоянии…

Коэффициент теплопроводности силикатного кирпича

Массовая удельная теплоемкость стали распространенных марок В сводной таблице представлена удельная теплоемкость стали распространенных марок:…

Коэффициент теплопроводности силикатного кирпича

Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от…

Коэффициент теплопроводности кирпича

Качественный дом должен быть теплым. Чтобы решить из какого материала лучше построить жилье нужно проанализировать величину сопротивления теплового потока материала стен. Традиционно в России отдают предпочтение строениям из кирпича, но оправдано ли это. Какова его теплопроводность и стоит ли строить кирпичное жилье для постоянного проживания на самом деле.

Коэффициент теплопроводности силикатного кирпичаКоэффициент теплопроводности силикатного кирпича

Что такое теплопроводность?

На стадии проектирования любого дома, солидного коттеджа или дачной постройки наряду с архитектурными и конструктивными решениями, закладываются технические и эксплуатационные характеристики строения. Теплотехнические значения постройки напрямую зависят от материалов, из которых она возведена.

В соответствии со СНип 23-01-99, СНиП 23-02-2003, СНип 23 -02-2004 разработаны

технологии обеспечения климатологии, тепловой защиты жилья, а так же правила их проектирования. Созданы таблицы теплопроводности, полезные при определении критериев материалов для создания благоприятного микроклимата в зависимости от их показателей теплопроводности.

Коэффициент теплопроводности силикатного кирпичаКоэффициент теплопроводности силикатного кирпича

Показатели теплопроводности строительных материалов

Под теплопроводностью понимается физический процесс передачи энергии от нагретых частиц к холодным до наступления теплового равновесия, до того как сравняются температуры. Для жилого строения процесс теплопередачи определяется время выравнивания температуры в нутрии его и снаружи. Соответственно, чем длительнее процесс выравнивания температур (зимой – охлаждения, летом – нагревания), тем выше показатель (коэффициент) теплопроводности.

Коэффициент это показатель количества тепла, которое за единицу времени теряется, проходя через поверхность стен. Чем выше, тем больше теряется тепла, чем ниже, тем лучше для жилого дома.

Важно!Задача проектирования в том, чтобы подобрать материалы с наиболее низким коэффициентом теплопроводности для возведения всех строительных конструкций.

Что влияет на коэффициент теплопроводности?

Коэффициент теплопроводности силикатного кирпичаКоэффициент теплопроводности силикатного кирпича

Строительные материалы, кирпич, бетон, блоки, дерево, панели имеют разную теплопроводность. Но физические свойства этих материалов, влияющие на показатели проводимости тепла, одинаковы. Вот они:

Как данные параметры влияют на проводимость тепла. Плотность материала характеризуется взаимодействием частиц, передающих тепловую энергию, чем плотность выше, тем потери тепла больше. Пористость материала способствует разрушению его однородности, тепло задерживается порами, в которых воздух, а теплопроводность воздуха при 0°С равна 0,02 Вт/м*. Чем больше пористость кирпича или иного материала, тем ниже коэффициент теплопроводности. Если структура пол малого размера и закрытого типа, потери тепла снижаются. Повышенная влажность материала снижает (ухудшает) показатель, так как сухой воздух вытесняется влажным.

В строительной профессиональной практике коэффициент определяется формулами, для обычного понимания необходимо понимать, что проводимость тепловой энергии – величина нормируемая, конструкция строения должна представлять собой монолитное сооружение, возведенное из материалов естественной влажности, требуемой толщины, как показано на картинке.

Полезно знать, что все строительные материалы делятся на два класса:

  1. те, из которых возводят конструкцию, каркас сооружения;
  2. те, которыми производят утепление конструкции.

Материалы для несущих конструкций характеризуются высоким коэффициентом теплопроводности. Самым холодным среди прочих является железобетон с коэффициентом – 1,29. Самый теплый материалом для стен пенобетон– 0,08. Интересно, что кирпич, согласно присвоенным показателям неплохо держит тепло:

Таким образом, таблица подсказывает, какой кирпич выбрать для строительства своего дома.

Коэффициент теплопроводности силикатного кирпичаКоэффициент теплопроводности силикатного кирпича

Важно!Теплопроводность только один из большого числа технических показателей строительного материала, принимать во внимание которые необходимо при проектировании и возведении будущего дома.

Кроме того, кирпич от разных производителей также различается по техническим и физическим, а также ценовым показателям.

Виды кирпича и их теплопроводность

Из вышеприведенной таблицы видно, что существует несколько видов кирпича, которые помимо характеристик теплопроводности имеют разные показатели экологической безопасности, устойчивости к огню, морозостойкости. Каждый вид имеет свои показатели прочности, долговечности. Все кирпичи можно разделить по материалу изготовления на два типа:

  1. керамический, изготовленный из глины с разными добавками;
  2. силикатный, изготовленный из кварцевого песка и воды.

Каждый вид кирпича имеет градации по назначению:

  • строительная, для возведения поверхностей;
  • специальная, для обустройства поверхностей соприкасающихся с высокими температурами, печь, печная трубе, камин;
  • облицовочная, для отделки фасадов зданий.

Теплопроводность пустотелого кирпича, объем пустот, которого составляет 45% от общей массы, меньше. Его можно использовать для возведения несущих стен и перегородок, важно, чтобы раствор, на который его кладут, был густым и не забивал полости.

Полнотелый кирпич имеет не более 13% пустот, хорош для возведения колон, столбов и прочих опорных конструкций. Такой материал можно использовать и в строительстве жилых домов, стены придется в таком случае утеплять.

Коэффициент теплопроводности силикатного кирпичаКоэффициент теплопроводности силикатного кирпича

Клинкерный кирпич имеет прекрасные характеристики теплопроводности, лучшее использование – возведение утепленных конструкций.

Повысить коэффициент теплопроводности можно созданием воздушных зазоров, теплоизоляцией, естественной циркуляцией воздуха. Чтобы дом был теплым без дополнительного использования теплоизоляционных материалов нужно увеличивать ширину стены. Но в таком случае толщина стены должна достигать полуметра. Использование современных утеплителей, с нужными значениями теплопроводности, позволит построить теплый дом для комфортного проживания.

Источники: http://kirpichmaster.ru/vidy/teploprovodnost-kirpicha.html, http://thermalinfo.ru/svojstva-materialov/strojmaterialy/teploprovodnost-kirpicha-sravnenie-kirpicha-po-teploprovodnosti, http://dom-iz-kirpicha.ru/blog/nachalo-stroitelstva/teploprovodnost-kirpicha

kirpich-sbm.ru

Изделия из кирпича — характеристики

Клинкерный кирпич обладает самым высоким коэффициентом теплопроводимости, благодаря чему его применение очень узкоспециализированное – для кладки стен материал с такими свойствами использовать было бы нецелесообразно и затратно в плане дальнейшего утепления здания — заявленная теплопроводимость этого материала (λ) находится в диапазоне 04-09 Вт/(м·К). Поэтому клинкерный кирпич чаще всего идет для дорожных покрытий и укладки прочного пола в производственных сооружениях.

Свойства клинкерных изделий Параметры
Размеры в мм 250 x 120 x 65
Вес в кг 3
Удельная масса в кг/м3 1500-2000
Показатель пустотности 34%
Морозоустойчивость 100
Влагопоглощение 3-5%
Теплопроводимость (Вт/м·С) 0,4
Единиц в поддоне 504
Характеристики различных видов кирпича
Характеристики различных видов кирпича

 

 

У силикатных изделий теплопередача прямо пропорциональна массе изделия. То есть, у двойного кирпича из силиката марки M 150 теплопотери составляют λ = 0,7-0,8, а у щелевого силикатного изделия коэффициент передачи тепла будет равняться λ = 0,4, то есть — в два раза лучше. Но стены из силикатного кирпича рекомендуется дополнительно утеплять, к тому же прочность этого стройматериала оставляет желать лучшего.

Керамический кирпич производится в разных вариантах форм и характеристик:

  1. Полнотелые изделия с коэффициентом теплопроводности λ = 0,5-0,9;
  2. Пустотелые изделия — λ принимается равным 0,57;
  3. Рядовой огнеупорный материал: коэффициент теплопроводности шамотного кирпича равен λ = 06-08 Вт/(мК);
  4. Щелевой с коэффициентом λ = 0,4;
  5. Керамический кирпич с повышенными теплоизоляционными характеристиками и λ = 0,11 очень хрупкий, что значительно сужает ареал его применения.
Размеры кирпича
Размеры кирпича

Из всех разновидностей керамического кирпича можно возводить стены дома, но у каждого – свои теплотехнические параметры, исходя из которых, производится расчет будущего наружного утепления стен.

Параметр Марка – стандартный показатель
ШАК ША ШБ ШВ ШУС ПБ ПВ
Огнеупорность 1730°C 1690°C 1650°C 1630°C 1580°C 1670°C 1580°C
Пористость 23% 24% 24% 30% 24%
Предельная прочность 23 Н/мм2 20 Н/мм2 22 Н/мм2 12 Н/мм2 20 Н/мм2 15 Н/мм2
Процент добавок
Оксид алюминия Al2 O2 33% 30% 28% 28% 28%
Оксид алюминия Al2 O3 14-28% 14-28%
Диоксид кремния SiO2 65-85% 65-85%
Параметры шамотного кирпича
Параметры шамотного кирпича

 

Показатели теплопроводности изделий из керамики — самые низкие среди перечисленных выше вариантов.

Керамический кирпич, средние значения Клинкерный кирпич Керамический кирпич
Размеры 250 х 120 х 65; 240 х 115 х 71; 210 х 100 х 65; 210 х 100 х 50 и т.д. 250 х 120 х 65
Удельная масса, кг/м3 1450 1100
Предельная прочность M 350 M 200
Теплопроводность, Вт/м°С 0,6 0,4
Морозоустойчивость ≥ 300 60
Влагопоглощение, % ≤ 6 ≥ 10
Достоинства Прочность

Долговечность

Прочность

Долговечность

Не нужен специальный уход

Недостатки Высокая стоимость Возможность появления высолов

Высокая стоимость

Поризованный кирпич как материал с характеристиками теплопроводности является самым лучшим, как и теплая кирпичная керамика. Поризованное изделие делается так, что кроме щелей в теле, материал имеет особую структуру, уменьшающую собственный вес кирпича, что и повышает его теплонепроницаемость.

Поризованный кирпич
Поризованный кирпич

 

Любой кирпич теплопроводность которого может достигать показателей 0,8-0,9, имеет свойство накапливать в теле изделия влагу, что особенно негативно проявляется в морозы – превращение воды в лед может вызвать разрушение структуры кирпича, да и постоянный конденсат в стене – это причина появления плесени, препятствие для прохождения воздуха сквозь стены и уменьшение теплопроводности стен в целом.

Чтобы не допустить или максимально уменьшить накопление влаги в стенах, кирпичная кладка делается с воздушными зазорами. Как правильно обеспечить постоянную воздушную прослойку:

  1. Начиная с первого ряда кирпича, между изделиями оставляют воздушные зазоры до 10 мм толщиной, не заполняемые раствором. Шаг таких зазоров — 1 метр;
  2. Между кирпичом и материалом теплоизолятора по всей высоте стены оставляют воздушный зазор толщиной 25-30 мм – по типу вентилируемого фасада. По этим воздушным каналам будут проходить постоянные воздушные потоки, которые не дадут стене потерять свои теплоизоляционные свойства, и обеспечат постоянную температуру в доме при условии работающего зимой отопления.
Воздушные пустоты в кирпичной кладке
Воздушные пустоты в кирпичной кладке

 

Важно: не рекомендуется обустраивать бетонную стяжку или перекрытие из любых стройматериалов на последнем ряду кладки из кирпича – нужно, чтобы воздух по каналам циркулировал постоянно.

Существенного уменьшения коэффициента теплопроводимости кладки из кирпича можно добиться, не понеся при этом больших расходов, что важно для индивидуального строительства. Качество жилья при реализации вышеперечисленных методов не пострадает, а это – самое главное.

Если в строительстве дома использовать огнеупорный шамотный кирпич, то можно заметно повысить и пожарную безопасность жилья, опять же без существенных затрат, кроме ценовой разницы в марках кирпича. Коэффициент теплопроводности у огнеупорного кирпича немного выше, чем у клинкерного, но безопасность тоже имеет большое значение при эксплуатации дома.

Повышение уровня звукоизоляции кирпичной стены утеплителем
Повышение уровня звукоизоляции кирпичной стены утеплителем

Уровень звукоизоляции стен равен из керамического кирпича ≈ 50 Дб, что близко к стандартным требованиям СНиП – 54 Дб. Такой уровень звукоизоляции может обеспечить кирпичная стена, выложенная в два кирпича – это 50 см толщины. Все остальные размеры нуждаются в дополнительной шумоизоляции, реализованной в самых разных вариантах. Например, железобетонные стены панельного стандартной толщины 140 мм имеют степень шумоизоляции 50 дБ. Повысить свойства звукоизоляции дома можно, увеличив толщину кирпичных стен, но выйдет это дороже, чем при прокладке дополнительного слоя шумоизоляции.

jsnip.ru

Характеристики

В состав данного изделия входит 90% кварцевого песка и 10% различных добавок. Изготавливают его методом сухой прессовки и обжига под высоким давлением. В результате получается строительный материал, обладающий следующими параметрами.

Теплопроводность

Данный термин означает способность вещества (материала) проводить тепло. В сфере строительства этот показатель является ключевым, ведь от него зависит насколько эффективна будет теплоизоляция тем или иным утеплителем.

На величину этой характеристики оказывают влияние такие факторы, как плотность, размеры, наличие (отсутствие) пустот и вид материала. По сути, чем меньше данный показатель, тем лучше утеплитель.

Коэффициент теплопроводности силикатного кирпича составляет порядка 0,69 Вт/(м*К), что почти в 1,5 раза больше, чем у его керамического собрата. Это значит, что он в полтора раза лучше сохраняет тепло в помещении, следовательно, его использование более целесообразно.

Интересный факт: согласно СНИП от 23-02-2003, материалы для наружной отделки должны обладать теплопроводностью не менее 3,078 Вт/(м*К). Получается, что он почти в 4,5 раза превосходит данную норму.

Плотность

Данный показатель характеризует вес и прочность изделия. Так, согласно ГОСТ 379-95, полнотелый кирпич должен обладать плотностью не менее 1500 см/см3. Силикатные образцы обладают плотностью порядка 1850-1900 г/см3, следовательно, они полностью отвечают заявленным требованиям.

Совет: при покупке кирпича, поинтересуйтесь, каким показателем плотности обладает выбранный образец. Сегодня многие производители добавляют некоторые примеси, ухудшающие характеристики материала (в том числе и плотность). Поэтому целесообразно поинтересоваться о наличии таких веществ.

Так, вес одного изделия составляет порядка 4,2 кг, но некоторые производители предлагают своим клиентам образцы нестандартных размеров. Разумеется, в таком случае их стоимость повысится, так как речь идет о перенастройке высокотехнологичного оборудования.

Водопоглощение

Этот показатель характеризуется как способность вещества удерживать влагу. Согласно ГОСТ 379-95, силикатный полнотелый кирпич должен иметь коэффициент водопоглощение не менее 6%.

Интересно, что в данном документе указана лишь верхняя граница. По мнению экспертов оптимальным является значение 7-12%, которым и обладают большинство образцов.

Данный материал имеет кристаллическую структуру (ведь в качестве исходного сырья используется песок), что позволяет ему быстро впитывать и отдавать влагу. Это обеспечивает быстрый обмен влагой, который не наносит вреда структуре.

Цветовая гамма и текстуры

Безусловно, в данном аспекте он является единоличным лидером, ведь его можно покрасить в совершенно любой цвет и придать рельефную структуру. В результате появляется возможность приукрасить любое невзрачное здание, добавив ему некую изюминку.

Многие производители дают возможность потребителю создать уникальный образец. В частности, существует возможность компьютерной колеровки, которая позволяет воспроизвести любой оттенок.

Сфера применения

Данное изделие активно применяется как в гражданском, так и промышленном строительстве, поскольку оно отвечает всевозможным требованиям. Этому также поспособствовало создание более совершенных образцов.

Так, двойной силикатный кирпич м 150 является лидером в своем сегменте по таким параметрам как прочность, морозостойкость и теплопроводность. Его легко укладывать своими руками при строительстве или ремонте.

Экологичность

Исходное сырье для силикатного кирпича – это песок, известь и вода, следовательно, он является природным материалом. В 21-ом веке все больше людей стали заботиться об экологической безопасности, поэтому данный аспект имеет особое значение.

В данном материале отсутствуют летучие углеводородные соединения и формальдегид, что исключает возможность выделения токсичных веществ. По заявлениям специалистов, силикат по экологичности можно сравнить с древесиной. При этом, в отличие от неё он не подвержен гниению и горению.

Особенности

Теперь настало время познакомиться с главными особенностями этого материала. Их целесообразно разделить на положительные и отрицательные.

Достоинства

  • Ключевое преимущество силиката над другими материалами – это низкая цена. Данный факт объясняется более простой системой производства и дешевым исходным сырьем. Его производственный цикл не более 18 часов, в то время как у керамического кирпича он достигает 6 дней.
  • Он обладает повышенной звукоизоляцией, что значительно сокращает расходы при строительстве. Благодаря способности поглощать шумы и вибрацию, он обеспечивает комфортную обстановку в помещения. Как гласит инструкция, он не нуждается в установке дополнительной звукоизоляции.
  • Также нельзя не отметить и тот факт, что он прекрасно противодействует агрессивных воздействиям окружающей среды: плесень, бактерии, грибок и т.д. Это избавляет от необходимости наносить антисептики.
  • Уже упомянутую широкую цветовую гамму тоже можно занести в актив данного материала. Она позволяет создавать уникальные дизайны фасадов, чем с удовольствием пользуются многие дизайнеры. Причем он окрашивается полностью, а не только по лицевой стороне.
  • Фасады, сделанные из силикатного кирпича не нуждаются в дополнительной отделке, что значительно сокращает временные и финансовые затраты. Данный материал имеет абсолютно законченный вид.
  • Повышенная морозостойкость делает силикатный кирпич настоящим бестселлером для регионов с суровым климатом (к примеру, Сибирь). Ему не страшны даже жуткие северные морозы до -65 градусов.

Недостатки

Разумеется, нашлось место и отрицательным моментам, пусть их и не так много:

  • Ограниченность использования при возведении фундамента и цокольных этажей. Данное ограничение вызвано тем, что воздействие солей, содержащихся в грунтовых водах отрицательно влияет на силикатный кирпич. Он может начать рассыхаться со временем.
  • В сравнении с другими аналогами, у него более низкие показатели таких характеристик, как огне- и водостойкость. Это значительно сокращает его эксплуатационный период.
  • В экстремальных условиях данный материал начинает мгновенно терять все свои качества. Так, к примеру, в регионах с частыми дождями не желательного его использовать, так как он довольно быстро начнет рассыхаться.

Совет: силикатный кирпич (стандартный) нельзя использовать для кладки печей и каминов, так как он довольно плохо противостоит высоким температурам. Максимальный нагрев, который он может выдержать – это 550 градусов (если речь идет об улучшенных аналогах), в то время как поверхность печи накаляется до 700.

  • Большой вес, что заставляет возводить массивный фундамент. Естественно, любой кирпич имеет внушительную массу, но силикатный выделяется на фоне своих «собратьев».

На этом список качеств можно закончить. Констатируя все вышесказанное, можно сказать, что силикатный кирпич является превосходным материалом для различных видов наружных работ. К тому же, он обладает отменным соотношением цена-качество, благодаря которому и получил широкое признание в нашей стране.

klademkirpich.ru

Что обозначает показатель?

Каждый стройматериал выделяется своей теплопроводностью. Этим показателем характеризуется способность удерживать тепло в доме. У бетона, дерева и кирпича эта характеристика имеет разные значения. Чем ниже значение показателя, тем лучше у него сопротивление теплопередаче. Но следует учитывать, что уровень теплоизоляции увеличивается при уменьшении плотности стройматериала. Это делает блоки более легкими, поэтому при возведении двухэтажного дома лучше выбрать пустотелый материал для уменьшения давления на фундамент дома. Толщина кирпичной кладки меняется в зависимости от теплопроводности стройматериала. Для экономии строительства используется двойной блок. Для оценки теплоизоляционных свойств утеплителя используют коэффициент теплотехнической однородности.

Вернуться к оглавлению

Свойства различных типов блоков

Красный керамический

Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.

Коэффициент теплопроводности силикатного кирпича
В составе такого материала присутствует глина.

Этот вид стройматериалов является популярным и доступным. Состоит из глины и других добавок. Этими строительными материалами возводится несущая конструкция, облицовываются или утепляются стены старого дома, а также сооружаются заборы и укладывается фундамент. Изделие отличается высокой прочностью и долговечностью. Теплопроводность керамического кирпича зависит от разновидности. Лучшим вариантом для утепления дома является использование пустотелого кирпича. Чем больше степень пустотелости, тем меньше изделие способно проводить тепло. Кирпичная стена может укладываться в один или два ряда. Кроме этого, стройматериал обладает такими свойствами, как:

  • прочность;
  • морозостойкость;
  • огнеупорность;
  • звукоизоляция.

Вернуться к оглавлению

Клинкерный

Эта разновидность красного керамического стройматериала чаще всего применяется для облицовочных работ, укладки тротуаров. Это обусловлено его высокой теплопроводностью. Она достигает 1,16 Вт/м°С. Уменьшения этого показателя удается достичь у пустотелых образцов. При строительстве дома из таких блоков необходимо использовать дополнительные методы утепления. Большая плотность изделия придает ему дополнительной влаго- и морозостойкости. Облицовочный кирпич широко используется для декоративной отделки домов снаружи и внутри.

Вернуться к оглавлению

Характеристика шамотного

Коэффициент теплопроводности силикатного кирпича
Из шамотного материала получаются хорошие камины.

Так как этот вид стройматериала характеризуется высокой способностью проводить тепло, его чаще применяют при возведении каминов, печей. Этим обусловлено его название «печной кирпич». В таком случае теплопроводность шамотного кирпича играет решающую роль в выборе материалов для стройки. Подобные свойства помогают экономить энергию для обогрева помещения. Кроме этого, шамотный кирпич обладает такими свойствами, как:

  • огнеупорность;
  • устойчивость к перепадам температуры;
  • высокая теплопроводность;
  • легкий вес;
  • устойчивость к воздействию щелочей и ряда кислот;
  • прочность;
  • эстетичность.

Вернуться к оглавлению

Силикатный

Этот вид стройматериала ценится прочностью, экологичностью и звуконепроницаемостью. Но теплопроводность кирпича этого типа не завышена, поэтому помещения из него требуют дополнительного утепления. Силикатные блоки делают из смеси песка и извести с добавлением связующих компонентов, которые прессуются и впоследствии подвергаются обжигу. Самым распространенным является изделия марки М100. Различают рядовой и лицевой силикатный кирпич. Каждый из них имеет свою сферу применения. Кроме этого, материал способен впитывать влагу, что не позволяет использовать его в местах с повышенной влажностью и при строительстве фундамента.

Вернуться к оглавлению

Какая теплопроводность изделий?

Коэффициент теплопроводности силикатного кирпича
У клинкерного материала этот показатель наивысший.

От состава, способа изготовления и пустотелости зависят характеристики стройматериалов. Коэффициент теплопроводности кирпича характеризует его способность проводить тепло. Клинкерные изделия отличаются высоким уровнем, а керамические материалы — самым низким в сравнении с другими видами. Характеристика разновидностей изделия указана в таблице.

Характеристика теплопроводности стройматериала
Вид Показатель, Вт/м°С
Керамический Полнотелый 0,5—0,8
Щелевой 0,34—0,43
Поризованный 0,22
Клинкерный 0,8—1,16
Шамотный 0,6
Силикатный Полнотелый 0,7—0,8
Пустотелый 0,4—0,66

Вернуться к оглавлению

Что влияет на показатели?

Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.

Коэффициент теплопроводности силикатного кирпича
Для максимально эффективной теплоизоляции изделие должно содержать много пустот.

Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:

  • Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
  • Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
  • Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
  • Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.

При выборе стройматериалов руководствуются не только одним свойством удерживать тепло. Учитывается, в каких климатических условиях будет использоваться кирпич и функциональное назначение планируемой конструкции. Для строительства дома лучше подойдет применение двойного пустотелого керамического блока, а для облицовки — лицевого клинкерного кирпича. Преимущество силикатных блоков состоит в невысокой цене, но влаговпитываемость не позволяет его использование в местах с повышенной влажностью. К выбору стройматериалов рекомендуется относиться ответственно, так как от этого зависит качество постройки.

 

etokirpichi.ru

Коэффициент теплопроводности силикатного кирпича

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector